Contribution of organic compost and bacterial inoculation in improving quality of quinoa seeds

Document Type : Original Article

Authors

Soil and Water Research Department, Nuclear Research Center. Atomic Energy Authority, Cairo, Egypt.

Abstract

Biofertilizers and organic compost are a important  source of plant supplements during the plant development. Compost was used to pots under greenhouse condition with the application doses of 0, 50, 100, and 200 kg ha−1 on the basis of its nitrogen content. Bacterial strains of Azotobacter chroococcum (a symbiotic nitrogen fixer) and Bacillus polymyxa  as plant growth-promoting rhizobacteria (PGPR) were applied as biofertilizers.  Pot test was done to quality the role of organic compost in combination with bacterial inoculation. In general, organic compost and biofertilizers improved  growth and seed quality of quinoa. Then again, the collaboration between bacterial inoculation and nitrogen doses had significant effect for all studied traits. Nitrogen dose of 200 kg N ha-1 was end up being the best dose for nitrogen addition  of soil for N %, protein content %, P % and K % with dual inoculum. The higher physiological content  of nitrogen (5.52 %) , crude protein (34.5 %),phosphorus  (0.81%)  and potassium ( 1.65%) were recorded from application 200 kg N ha-1  with dual inoculum (Azotobacter chroococcum , Bacillus polymyxa). The combination of  nitrogen dose of 200 kg N ha-1  with dual inoculation was promising combination that generated highest plant dry weight 36.4 g plant-1 and gave the highest seed yield 8.33 g plant-1 with yield increase of about 88.48 % over the uninoculated. Finally,  the efficiencies of compost obtained from composting method on the growth, mineral nutrition and nutrient of quinoa, which will considers a natural agreeable creation of organic quinoa for markets.  

Keywords

Main Subjects


[1] Pearsall DM. The origins of plant cultivation in South America. In: C.W.Cowan, P.J.Watson (Eds.), The Origins of Agriculture. Smithsonian Institute Press, Washington, DC, (1992); p.173-205.
 [2] Bhargava A, Shukla S,  Ohri D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research. (2007); 101:104–116.
[3] Comai S, Bertazzo A, Bailoni L, Zancato M, Costa CVL, Allegri G.  The content of proteic and nonproteic (free and protein bound) tryptophan in quinoa and cereal flours, Food Chem. (2007); 100:1350-1355.
 [4] Bilalis DJ, Travlos IS, Karkanis A, Gournaki M, Katsenios G, Hela D, Kakabouki I. Evaluation of the allelopathic potential of quinoa (Chenopodium quinoa Willd.). Romanian Agricultural Research. (2013); 30:359-364
 [5] FAO Origin and History, International Year of Quinoa (2013). Available online: http://www.fao.org/quinoa-2013/what-is-quinoa/nutritional-value/en/?no_mobile=1
 [6] Zhang J, Chen G, Sun H, Zhou S, Zou G. Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour. Technol. (2016);  200: 876–883.
[7] Rastogi M, Nandal M, Nain, L. Additive effect of cow dung slurry and cellulolytic bacterial inoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agric. (2019); 1–8.
[8] Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. (2016); 48: 115–126.
[9] Goyal S, Sindhu SS.  Composting of rice straw using different inocula and analysis of compost quality. Microbiology Journal (2011);1: 126-138.
 [10] Erley GS, Kaul HP, Kruse M,  Aufhammer W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy. (2005); 22 (1): 95-100.
 
[11] Jacobsen SE, Jørgensen I, Stølen O. Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J. Agrc. Sci. (1994); 122: 47-52.
[12] Bationo A, Fairhurst T, Giller K, Kelly V, Lunduka R, Mando A, et al, Handbook for integrated soil fertility management. Africa Soil Health Consortium Fairhurst. Nairobi, Kenya: CAB International. (2012).
[13] Brady NC, Weil RR. The Nature and Properties of Soil. 13th Edition, Prentice Hall, Upper Saddle River, New Jersey. (2002).
[14] Gomaa, EF. Effect of nitrogen, phosphorus and biofertilizers  on  quinoa plant (Chenopodium  quinoa). J. Applied Sci. Res. (2013); 9: 5210-5222.
 [15] Fawy  HA, Attia MF, Hagab RH. Effect of nitrogen fertilization and organic acids on grains productivity and biochemical contents of Quinoa plant grown under soil conditions of Ras Sader Sinai.  Egyptian J. Desert Res. (2017);  67(1): 169-183
 [16] Glick, BR. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica. (2012).
 [17] Yagmur, B., Gunes, A. Evaluation of the Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Quality Parameters of Tomato Plants in Organic Agriculture by Principal Component Analysis (PCA). Gesunde Pflanzen 73, 219–228 (2021). https://doi.org/10.1007/s10343-021-00543
[18] Esitken A, Yildiz HE, Ercisli S, Donmez M, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124(1):62–66
 [19] Abdel-Moghies AH. Impact of endophytic bacteria and organic sources on nitrogen bio-availability I one legume crop using nuclear technique. M.Sc. Thesis, Al-Azhar Univ., Fac. of Sci. Bot and Microb Dep., Cairo, Egypt (2018).
[20] Misra RV, Roy RN,  Hiraoka H. On-farm composting methods. FAO, Land and Water Discussion Paper 2, Viale delle terme di Caracalla, 00100 Rome, Italy (2003). p. 35.
[21] Dhillon GS, Kaur S, Brar, SK. Verma M. Potential of apple pomace as a solid substrate for fungal cellulose and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. (2012); 38: 6–13. DOI: 10.1016/j.indcrop.2011.12.036 
[22] Ang SK, Shaza EM, Adibah YA, Suraini AA. Madihah MS. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid-state fermentation. Process Biochem. (2013); 48:1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019
[23] Miller GL. Use of dinitrosalicylic acid reagent  for determination of reducing sugar. Analytical  Chemistry. (1959);   31, 426-428.
[24] Nelson DW, Sommers  LE. Total carbon, organic carbon and organic matter: In: A.L. Page, Miller RH and Keeney DR Methods of soil analysis. Part 2 Chemical and Microbiological Properties, (1982);  p: 539-579.
 [25] Estefan G, Sommer R, Ryan J. Methods of soil, plant and water analysis: A manual for the West Asia and North Africa regions. International Center for Agricultural Research in the Dry Areas (ICARDA), 3 Ed. (2013).
 [26] Carter MR,  Gregorich EG. Soil Sampling and Methods of Analysis. (2nd ed.), CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL, (2008);  p. 1224.
 [27] Anon. “Conversion of a Flooded Potash Mine to Solution Mining”, Phos. and Potas., No. 168, (1990). p. 23–28 (July-Aug.).
 [28] Snedecor GW, Cochran WG. Statistical Methods. Eight Ed., Iowa  State Univ. press Iowa USA (1989).
 [29] Guo XH, Lv YD, Jiang J, Li HY,  Liu GF. Expression, purification and characterization of a peroxidase from Tamarix hispida. African Journal of Biotechnology. (2012).  11: 1540-1544.
[30] Zhao Y, Zhao Y, Zhang Z, Wei Y, Wang H, Lu Q. et al Effect of thermo- tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Manag. (2017); 68: 64–73.
[31] Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T. Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour. Conserv. Recycl. (2017); 122: 51–65.
[32] Brito LM,  Coutinho J, Smith S. Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresource technology. (2008);  99: 8955-8960
[33] Pathan S, Eivazi F, Valliyodan B, Paul K, Ndunguru G, Clark K. Nutritional composition of the green leaves of quinoa (Chenopo-dium quinoa Willd.). J of Food Res. (2019); 8:55–65. https:// doi. org/ 10. 5539/ jfr. v8n6p 55
[34] Bilalis D, Kakabouki I, Karkanis A, Travlos I, Triantafyllidis V, Hela D. Seed and saponin production of organic quinoa (Chenopodium quinoa Willd.) for different tillage and fertilization. Not Bot Horti Agrobo. (2012);  40:42-46
[35] Al-Sayed HM, Hegab SA, Youssef MA, Khalafalla MY. Integrated effect of inorganic and organic nitrogen sources on growth  and yield of Roselle (Hibiscus sabdariffa L.). Ass J Agric Sci (2019); 50:164–183
[36] Roussis I, Kakabouki I, Bilalis D. Comparison of growth indices  of (Nigella sativa L.) under different plant densities and fertilization. Emirates J Food Agric (2019); 31:231–247. https:// doi. org/ 10. 9755/ ejfa
[37] Yousef AF, Youssef MA, Ali MM, Ibrahim MM, Xu Y, Mauro RP  Improved growth and yield response of Jew’s mallow (Corchorus olitorius L.) plants through bio fertilization under semi-arid climate conditions in Egypt. Agron (2020). 10:1801–1815.https:// doi. org/ 10. 3390/ agron omy10 111801
[38] Bhalshankar C. Study of the impact of organic manures and  bio-fertilizers on growth of Phaseolus aureus roxb. Nepal J Biotechnol (2020). 8:76–81
[39] Awadalla A,  Morsy ASM Influence of planting dates and nitrogen fertilization on the performance of quinoa genotypes under Toshka conditions  Egypt. J. Agron. (2017). 39 (1): 27-40.
 [40] Basra SMA, Iqbal S, Afzal I. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. Int. J. Agric. Bio. (2014). 16(5): 886-892.
 [41] Shams AS. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions,  Proc. 13th International Conf. Agron., Fac. of Agric., Benha Univ., Egypt, 9-10 September, (2012). p:195-205.
[42] Ebrahim A, Hamid RB,  Moral M. Effects of ascorbic acid foliar spraying and nitrogen fertilizer management in spraying cultivation of quinoa (Chenopodium quinoa) in North of Iran. Biological forum-An Int. J. (2014). 6 (2), 254-260.
 [43] Geren H, Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turk. J. Field Crops. (2015).  20: 59-64.
 [44] Kansomjet   PP, Thobunluepop N, Tonmukayakul P, Boonkorkaew P,  Junhaeng P. et al., (2014). Harvesting time and nitrogen management on yield and seed quality of quinoa. Agric. Sci. J., 45: 93-96.
 [45] Kansomjet   P,  Thobunluepop P, Lertmongkol S,   Sarobol E,   Kaewsuwan P,  Junhaeng P. et al Response of physiological characteristics, seed yield and seed quality of Quinoa under difference of nitrogen fertilizer management. Am. J. Plant Physiol. (2017). 12 (1): 20-27.
 [46] Kakabouki I, Bilalis D, Karkanis A, Zervas G, Tsiplakou E, Hela D, Effects of fertilization and tillage system on growth and crude protein content of quinoa  (Chenopodium quinoa Willd.): An alternative forage crop. Emir J Food Agric (2014).  26:18-24.
[47] Kakabouki OP, Hela D, Roussis I, Papastylianou P, Sestras AF,  Bilalis DJ. Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). J Soil Sci Plant Nutri (2018).18:220–235
 [48] Repo-Carrasco R, Espinoza C, Jacobsen S. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kaniwa (Chenopodium pallidicaule). Food Rev. Int. (2003).  19:179-189.
 [49] Muhammed AI. (2015). An assessment of quinoa (Chenopodium quinoa Willd.) potential as a grain crop on marginal lands in Pakistan. Am- Euras. J. Agric. & Environ. Sci. (2015). 15(1):16-23.
[50] Al Madini AM, Badran AE,  Algosaibi AM.  Evaluation of efficiency and response of  quinoa plant to nitrogen fertilization levels. Middle East J. Appl. Sci., (2019). 09: 839-849.  DOI:10.36632/mejas/2019.9.4.1