PETROGRAPHICAL, MINERALOGICAL AND GEOCHEMICAL STUDIES OF CRETACEOUS-PALEOCENE CLASTIC ROCKS IN WADI QWIEH – WADI ABU HAMRA AREA, CENTRAL EASTERN DESERT, EGYPT

Mohammed H. Awad¹, Magdy S. El Sawy², Osama R. El Shahat¹, Wael Abdel Wahab³, Baha`a A. Hassab El-Naby¹

(1) Geology Department, Faculty of Science, Al-Azhar University

(2) Geology Department, Faculty of Science, Suez Canal University

(3) National Research Center, Dokky

ABSTRACT

Integrated petrographical, mineralogical and geochemical studies were carried out on the sandstone and shale bedsof Tarif, Qusier, Duwi, Dakhla and Esna formations exposed at Wadi Qwieh – Wadi Abu Hamra area, which located between Latitudes 26° 16' and 26° 20' N and Longitudes 34° 05' and 34° 08' E

Petrographically, the studied sandstone samples in Tarif Formation is quartz arenite with iron oxides and silica cement, generally monocrystaline, moderately sorted, sub-rounded to sub-angular with normal and wavy extinction. The main mineralogical constituent of the studied sandstone is quartz with hematite, gypsum and microcline as minor constituent. The clay minerals are montmorillonite and kaolinite, where montmorillonite is more abundant that pointed to presence of ultramafic-mafic rocks in the source area.

Geochemical studies reflect that the sandstones of the Tarif Formation were probably deposited under relatively warm and slightly alkaline conditions.

Keywords: Clastic Rocks, Petrography, Mineralogy, Geochemistry, Depositional Environment, Wadi Qwieh, Wadi Abu Hamra.

1. INTRODUCTION

The study area is exposed at the central part of the Eastern Desert, along Red Sea Coast, Egypt. It lies between Latitudes 26° 16' and 26° 20' N and Longitudes 34° 05' and 34° 08' E (Fig.1).The study area is bounded by basement rocks in the northern and western sides, bounded by quaternary deposits in the eastern side to the coastal boundary. The area has attracted the attention of many authors whom studied the lithostratigraphy, biostratigraphy depositional environment (Word et and al.,1979, Howaidy 1979, El Badry et al., 1983, El-Kammar 2015, Hassaan et al., 2016, Abou El-Anwar 2017, Abou El-Anwar et al., 2018). This work aims to investigate the petrography, mineralogy, geochemistry and interpretation of depositional environment of the clastic sedimentary rocks in the Wadi Qwieh - Wadi Abu Hamra area.

1- METHODOLOGY

A total of 23samples were collected from thestudied clastic sedimentary rocks in the study area to throw some light on petrography, mineralogy, geochemistry and interpretation of the environment of deposition of the Tarif Formation, Qusier Variegated Shale, Duwi Formation, Dakhla Shale and Esna Shale. Description of the stratigraphic position of the studied rock units by using the field observation, identify the mineralogical composition, petrographical description to identify the different lithofacies and the chemical distribution of the major and trace elements and their studied rock units.

Petrographic microscope issued to investigate the mineral composition and texture of the studied samples. Also, the mineralogical analysis of (14 samples)of the studied sandstones and shales samples were carried out by the X-ray diffraction analysis (XRD). The

Fig.(1): Landsat image showing the study area.

analysis was carried out in the laboratories of Central Metallurgical Research Institute (CMRDI). The obtained X-ray data using interpreted using **ASTM** (1960) cards together with the published cards of (**Brown**, 1961 and **Deer et al.**, 1963).

Seventeen representative samples of four sandstones and thirteen shales have been subjected to chemical analysis to estimate their contents. The analysis was carried out in the laboratories of National Research Center, using Axios Sequential WD-XRF, PANalytical (2016).

2- GEOLOGIC SETTING

Figures 2 and 3 shows the geologic map of the study area and the composed stratigraphic succession of the study area, the stratigraphy of the study area is represented as a part of the central Eastern Desert.

Figurers(4 a - e) show the stratigraphic columnar section of the studied Tarif, Qusier Variegated, Duwi, Dakhla and Esna shale formations.

Structurally, the sedimentary rocks of study area are separable into two main divisions: the pre-rift Cretaceous-Eocene succession (more than 1500 m. thick) and the syn-rift Oligocene and younger sediments (**Khalil and McClay**, **2002**). The sedimentary sequence of the study area can be summarized as following from (top to base):

- Thebes Formation (Lower Eocene)
- Esna Shale (Upper Paleocene)
- Tarawan Chalk (Paleocene)
- Dakhla Shale (Maastrichtian to Danian)
- Duwi Formation (Campanian to Maastrichtian)
- Quseir Variegated Shale (Turonian)
- Tarif Formation (Cenomanian).

4. PETROGRAPHY

4.1. Quartz Arenite:

Quartz arenite was reported in the lower and middle part of the Tarif Formation and in the upper part of the Qusier Variegated Shale, in this rock, the iron oxides is the common cement of the quartz grains of the Tarif Formation samples. The quartz grains are subanguler to subrounded, moderately sorted, clay content less than 5%, so it is submature sample, have monocrystaline with oblique extinction, so it's origin is plutonic quartz grains > 95%, with contact normal (no compaction).(Fig.5 a, b).The quartz grains of the upper part of the Qusier Variegated Shale are monocrystaline with oblique extinction and many other with wavy extinction, also have polycrystalline quartz grains almost 2 units / grain are recorded (Figures 5 c, d), while in the middle part of the Tarif Formation the quartz arenite is cemented by silica (Fig.5 e).

Fig. (2): Geologic map showing the location of the study area (after Conoco 1987)

Fig. (3): Composite stratigraphic succession of the study area, Modified after (Said, 1990 andPurser and Bosence, 1998).

Fig. (4): Stratigraphic columnar section of the studied sections

Figures 5; a and b:*Quartz Arenite:* Photomicrograph showing Quart Arenite cemented by iron oxides, composed of subanguler to subrounded, moderately sorted quartz grains with oblique extinction (a, Plane Polarized Light, X40, b, Crossed Nicols, X40), c and d: *Quartz Arenite*Photomicrograph showing Quartz Arenite, cemented by silica, composed of subrounded and ill-sorted quartz grains, have monocrystaline type with oblique extinction and many other with wavy extinction, also have polycrystalline quartz grains, (c, Plane Polarized Light, X40, d, Crossed Nicols, X40), e: *Quartz Arenite*Photomicrograph showing Quartz Arenite cemented by silica, composed of subrounded of subanguler to subrounded quartz grains, Ill-sorted conglomerates grains, with monocrystaline(wavy extinction)(Crossed Nicols, X40).

5. MINERALOGY

5.1.Mineralogical composition of the bulk samples:

The identification of minerals of the bulk samples of the lower and middle parts of the Tarif Formation and of the upper part of the Qusier Variegated Shale illustrated in (Fig.5),show the presence of the noncarbonatemineral quartz as a major and minor contents of hematite,gypsum and microclineoccasionally, (Table 1).

Table 1: Minerals detected in XRD analysisof bulk samples

Mineral	Main lines in A°	ASTM card	Sample no
Quartz	$4.26A^\circ$ $3.34A^\circ\text{, and }1.82A^\circ$	5- 0490	3,6,25
Hematite	2.69A°, 1.69A° and 2.51A°	13-534	3
Gypsum	7.65A°, 3.06A°, and 4.27A°	6-0046	6
Microcline	$3.40A^\circ, 2.77A^\circ$ and $1.72A^\circ$	13-1	25

Quartz is the most abundant non-carbonate mineral in the bulk samples, the microscopic of samples revealed that the detrital quartz grains arethe most abundant.

Gypsum is recorded only in sample no. 6 in the Tarif Formation; the presence of gypsum in the sample reflects the increase of sulfate in solution either during the deposition or during the cementation processes.

5.2. Oriented-particle:

Samples were subjected to each study: 3 from lower, middle and upper part of the Qusier Variegated Shale, 2 from lower and middle part of Duwi, 3 from the middle part of Dakhla, 3 from the middle and upper part of Esna formations.

The clay minerals are montmorillonite and kaolinite. The charts of X-ray diffraction patterns of untreated, glycolated and heated of the oriented samples shown in Figures (5 a - k).

Droste et al., (1962) stated that the montmorillonite can be derived from weathering of chlorite in alkaline environment rather than from illite.

Mohr et al., (1971) reported that the montmorillonite originates from soils with relative high pH, rich in Ca^{+2} and Mg^{+2} and under impeded drainage. The increase in kaolinite content in the lower part of the Duwi Formation (Fig.5 e) and in the lower part of the Esna Shale (Fig. 5 i) points to seasonal change of climate and chemical weathering.The occurrence of kaolinite indicates a source area which experienced intense weathering possibly during prevalence of tropical conditions (Biscaye 1965).

Where increasing rainfall favour ionic transfer and pedogenic development (Leung and Lai 1965, Millot 1970, Wang and Chen 1988). Meanwhile the increasing concentration of kaolinite indicates the high water–rock ratio in the source area along with a humid-subtropical to tropical climate (Raucsik and Varga 2008.

Fig.5:Representative profiles of X-Ray diffraction patterns for three bulk sandstone samplesof Tarif Formation (samples 3 and 6) and Qusier Variegated Shale (sample 25) in (a), eleven shale samples; b: (sample no. 16), c: (sample no. 24), d: (sample no. 28), e: (sample no. 35), f: (sample no. 41), g: (sample no. 58), h: (sample no. 60), i: (sample no. 60), j: (sample no. 83), k: (sample no. 94), L: (sample no. 105),

6. GEOCHEMICAL CHARACTERIZATION

Table 2 shows the concentrations of the major constituents (in %) and trace elements (in ppm) in the studied rock units.

The major oxides and trace elements, shown in table 2 indicate the following geochemical characteristics:-

In Tarif sandstone samples, the CaO, MgO, K_2O , SiO₂, P_2O_5 , Na₂O, Cl, TiO₂, L.O.I., Ni, Cu, Sr, Zr, Cr and Mn show genital vertical increasevariation, while Al₂O₃, Fe₂O₃, SO₃, Co and Zn characterized by high fluctuation in vertical distribution in the studied sandstone samples.

In the shale samples, MgO, K_2O , SiO₂, P_2O_5 , Fe₂O₃, TiO₂, SO₃, Ni, Cu and Zn are

characterized by genital vertical variation, while CaO, Na₂O, Cl, L.O.I., Co, Sr, Zr, Cr and Mn are characterized by high fluctuation in vertical distribution in the studied shale samples.

Both CaO and L.O.I. show general decrease towards the center, while MgO show general increase from base to top. Where the Cl increase upward Tarif sandstone bed (7.14 %) the base of the shale and decrease in upper part in the shales, this may be pointed to arid evaporational environment. This may show change of a very shallow marine environment. The Qusier Variegated Shale is ferruginous (max.= 10.92), while the upper sandstone beds of the Tarif Formation is highly ferruginous (max. = 20.61).

Ľ
0
+
ST
-
5
ō
õ
2
1
e
5
~
5
ā
D
0
Ĕ
+
Ξ.
-
E
IC
C
-
.=
~
S
n
0
Ξ
ē
0
-
ö
ā
Ę
Ĕ
53
-
2
_
. =
\sim
ts
E
5
Ħ
÷
S
5
č
-
0
. ਦ
Ξ
-
2
Ŧ
4
0
S
-
0
.0
atio
tratio
ntratio
centratio
ncentratio
oncentratio
concentratio
: concentratio
2: concentratio
e 2: concentratio
ole 2: concentratio
able 2: concentratio
Table 2: concentratio

The control of the control of the constituents (in %). Tace elements (in %). Tace elements (in %). Tace and the control of the control	Major Constituents (in %)Trace elements (in %)And p %0K0 <thk0< th="">K0<t< th=""><th></th><th></th><th></th><th>u</th><th>oiter</th><th>աւօյ</th><th>Tarif</th><th><i>v</i></th><th>p p</th><th>19ier 9169</th><th>euQ</th><th>Λ</th><th>Du</th><th>Forms</th><th>Dak</th><th>Sha</th><th colspan="2">Esna Shale</th><th>us J</th><th>Aver</th></t<></thk0<>				u	oiter	աւօյ	Tarif	<i>v</i>	p p	19ier 9169	euQ	Λ	Du	Forms	Dak	Sha	Esna Shale		us J	Aver		
S.No. Carol Mg0 KJ0 FJ0 No. C1 FJ0 LO1 C0 Ni Carol Zable 1 5.03 0.01 6.03 A00 P.05 No. C1 FJ0 Ni Caro Ni Caro Ni Caro Ni Caro Ni Ni Caro Ni Ni </th <th>Major Constituents (iii %) Andia Constituents (iiii %) Andia Constituents (iii %) <t< th=""><th>S.No. Caro Mg0 K_0 St0 Currectinents (in %). Trace elements (in pm) 3.No. Cao Mg0 K_0 St0 At0. F0.5 No. Cr F6.0 T0.5 St0 At0 F0.5 No. F0.5 St0 T0 <t< th=""><th></th><th colspan="2">Sandstone</th><th>Average</th><th>hale</th><th colspan="3">əled2</th><th></th><th colspan="2">vi t-ion</th><th colspan="2"></th><th colspan="4"></th><th>rage of</th></t<></th></t<></th>	Major Constituents (iii %) Andia Constituents (iiii %) Andia Constituents (iii %) <t< th=""><th>S.No. Caro Mg0 K_0 St0 Currectinents (in %). Trace elements (in pm) 3.No. Cao Mg0 K_0 St0 At0. F0.5 No. Cr F6.0 T0.5 St0 At0 F0.5 No. F0.5 St0 T0 <t< th=""><th></th><th colspan="2">Sandstone</th><th>Average</th><th>hale</th><th colspan="3">əled2</th><th></th><th colspan="2">vi t-ion</th><th colspan="2"></th><th colspan="4"></th><th>rage of</th></t<></th></t<>	S.No. Caro Mg0 K_0 St0 Currectinents (in %). Trace elements (in pm) 3.No. Cao Mg0 K_0 St0 At0. F0.5 No. Cr F6.0 T0.5 St0 At0 F0.5 No. F0.5 St0 T0 T0 <t< th=""><th></th><th colspan="2">Sandstone</th><th>Average</th><th>hale</th><th colspan="3">əled2</th><th></th><th colspan="2">vi t-ion</th><th colspan="2"></th><th colspan="4"></th><th>rage of</th></t<>		Sandstone		Average	hale	əled2				vi t-ion								rage of			
Major Constituents (in %) Trace element Col Mgo K ₀ S ₀ L ₀ S ₀ Z ₀ <thz<sub>0 Z₀ <thz<sub></thz<sub></thz<sub>	Major Constituents (in %) Tack ferents (in %) Major Stop stop stop stop stop stop stop stop s	Major Constituents (in %)Trace elements (in ppm)CuoMgKoSi0AioPioNaioCiFoTiOConToTace elements (in ppm)500.16.302.016.30AioPioNaioCiFoTiOSi0AioPioSiSiSi1070.510.11.11070.10.10.10.10.10.11.1CiSiSiSi3.660.560.515.30.130.231.011.36.011.336.014.30711003.853.660.560.586.125.330.230.600.811.340.931.9978ND711003.853.660.560.531.230.130.131.171.36.014.101.51.903.651.4329.60.112.121.280.535.731.273.820.351.431.371.171.321.63.751.4329.60.112.121.280.535.731.273.280.931.431.551.411.633.750.122.140.141.271.241.231.441.251.411.551.911.49261.122.140.140.151.230.141.551.931.931.937920 </th <th></th> <th>S. No.</th> <th>-</th> <th>6</th> <th>9</th> <th>e of S.S. ples</th> <th>7</th> <th>61</th> <th>20</th> <th>24</th> <th>26</th> <th>35</th> <th>41</th> <th>58</th> <th>60</th> <th>83</th> <th>88</th> <th>94</th> <th>79</th> <th>105</th> <th>shale</th>		S. No.	-	6	9	e of S.S. ples	7	61	20	24	26	35	41	58	60	83	88	94	79	105	shale
Major Constituents (11 %) Major Constituents (11 %) Trace element 0.9 6.50 sto. P.0. Na.o C1 Fe.0 TO No	Major Constituents (in %) Trace elements (in %) Mg0 K,0 St0 Mo. P.0 Na C1 F.0 T10 Co Ni Ca Za Str 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 14.7 0.9 4.0 7 20 4.1 10 0.31 0.31 0.13 0.33 0.33 0.33 0.33 1.17 13 6.0 4.3 3.6 14.3 10	Mg0 K,0 Sol Vol No Trace elements (in ppn) 0.9 0.11 71 107 0.1 8.0 1.01 70 7 7 0.9 0.31 65.9 2.61 0.38 0.5 0.23 147 0.98 4.1 4.2 189 4.3 4.5 110 103 375 0.11 71 107 0.1 0.31 0.32 20.61 1.83 0.93 1.99 78 ND 71 100 375 0.25 1.3 0.18 0.93 3.7 1.17 13 6.0 1.33 6.0 1.33 6.0 1.33 29.6 134 103 134 103 134 134 117 136 117 136 112 134 115 134 115 144 143 144 143 144 144 144 144 144 144 144 144 145 145 144<		CaO	5.03	1.07	4.88	3.66	9.11	0.42	1.1	0.51	1.09	13.8	11.5	0.57	0.32	5.75	14.7	7.72	14.4	7.27	6.30
Major Constituents (in %) Trace elements Kio Sio Auo P ₂ O Na ₂ O C1 Fe ₁ O SO LO.L Co Ni Cu Zn 0.31 65.9 2.61 0.38 0.5 0.23 147 0.98 4.1 4.2 189 43 45 41 0.11 71 1.07 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 70 71 71 0.55 2.71 1.32 0.51 1.24 0.35 1.30 1.31 6.01 4.10 73 71 73 71 73 71 73 71 73 71 73 71 73 71 73 71 73 74 70 73 70 47 49 74 49 74 74 74 74 74 74 74 74 74 74 74 74 74 75	<i>Major Constituents (in %) Trace elements (in %) Majo Sia Trace elements (in %) Majo Sia Sia</i> <th< td=""><td>Major Constituents (in %) Trace elements (in ppn) K50 Nio, P.9. Na₉ Cir Fa. Trace elements (in ppn) 0.1 71 1.07 0.1 0.3 0.5 0.23 1.47 0.98 4.1 4.2 189 4.5 1.1 103 3.3 0.11 71 1.07 0.1 0.4 0.23 2.04 1.83 0.93 1.99 78 ND 71 100 3.43 1.32 5.35 1.23 0.18 1.300 1.33 6.01 1.43 5 1.41 103 1.41 11 1 1.43 20 2.3 1.43 2.3 2.41 1.90 2.41 2.97 1.93<td></td><td>MgO</td><td>0.9</td><td>0.51</td><td>0.27</td><td>0.56</td><td>2.57</td><td>2.8</td><td>2.9</td><td>3.31</td><td>3.11</td><td>1.24</td><td>1.65</td><td>3.49</td><td>3.12</td><td>1.92</td><td>1.98</td><td>3.1</td><td>6.49</td><td>7.41</td><td>3.22</td></td></th<>	Major Constituents (in %) Trace elements (in ppn) K50 Nio, P.9. Na ₉ Cir Fa. Trace elements (in ppn) 0.1 71 1.07 0.1 0.3 0.5 0.23 1.47 0.98 4.1 4.2 189 4.5 1.1 103 3.3 0.11 71 1.07 0.1 0.4 0.23 2.04 1.83 0.93 1.99 78 ND 71 100 3.43 1.32 5.35 1.23 0.18 1.300 1.33 6.01 1.43 5 1.41 103 1.41 11 1 1.43 20 2.3 1.43 2.3 2.41 1.90 2.41 2.97 1.93 <td></td> <td>MgO</td> <td>0.9</td> <td>0.51</td> <td>0.27</td> <td>0.56</td> <td>2.57</td> <td>2.8</td> <td>2.9</td> <td>3.31</td> <td>3.11</td> <td>1.24</td> <td>1.65</td> <td>3.49</td> <td>3.12</td> <td>1.92</td> <td>1.98</td> <td>3.1</td> <td>6.49</td> <td>7.41</td> <td>3.22</td>		MgO	0.9	0.51	0.27	0.56	2.57	2.8	2.9	3.31	3.11	1.24	1.65	3.49	3.12	1.92	1.98	3.1	6.49	7.41	3.22
<i>Major Constituents (in %) Trace elements (in %)</i> Si0 A ₅ O P ₅ O C1 F ₅ O TiO O N Ca N 55.7 12.3 0.18 0.89 0.08 3.7 1.17 13 6.0 4.1 4.2 189 4.3 4.7 3.0 71 19 55.7 12.3 0.18 0.89 0.08 3.7 1.17 13 6.0 4.7 3.2 2.0 4.7 3.2 2.0 4.4 4.7 3.2 19 4.7 3.0 4.3 4.5 4.7 4.5 4.7 4.5 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.7	Major Constituents (in %) Trace elements (in %) Si0 Aloo P ₂ O ₈ Na ₅ O C1 FeO TiO ₂ SO ₃ LO.1 Co Ni Cu Zn Sr 55.0 LO.1 0.13 0.5 0.23 14.7 0.98 4.1 4.2 189 4.3 41 103 55.7 1.0.7 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 70 100 55.7 1.23 0.18 0.30 1.33 6.01 4.3 45 41 103 57.1 20.3 5.78 7.17 3.82 0.33 1.43 109 1.47 37.50 32.00 43.67 134.3 5.41 1.30 0.1 1.27 1.43 0.31 1.43 1.49 1.49 49 49 49 48 49 49 49 49 49 49 49 49 49 49	<i>Majo Constituents (in %) Trace elements (in ppn)</i> Sion <i>Mo C F</i> ₀ 0 <i>N</i> ₀ 0 <i>C F</i> ₀ 0 <i>T</i> ₀ <i>C S</i> ₁ <i>S</i> ₁		K20	0.31	0.11	1.32	0.58	0.55	2.65	3.37	2.65	2.23	0.87	0.95	1.76	1.09	1.23	1.05	0.88	1.02	0.58	1.49
Major Constituents (in %) Trace element Ai,0. P_0.6 Na,0 C1 Fe,0. TO2 A0. C0 Ni Cu Zn Job P_0.6 Na,0 C1 Fe,0. TO2 A0. Cu Zn A1 Jub 0.1 0.4 0.23 1.47 0.98 4.1 4.2 189 43 41 Jub 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 Jub 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 43 45 41 Jub 0.1 0.1 0.14 1.13 1.99 71 79 70 49 71 Jub 0.1 1.27 1.74 10.35 1.48 1.52 ND 71 49 71 Jub 0.1 1.27 1.74 10.35 1.15 1.15 <t< td=""><td>Major Constituents (in %) Trace elements (in %) Ab0. P.0.8 Na.0 C1 Fr.0.1 T0.2 S0.3 1.4.7 0.98 4.1 4.2 189 4.3 4.1 10.3 2.61 0.38 0.5 0.23 14.7 0.98 4.1 4.2 189 4.3 4.1 100 1.07 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 1.23 0.18 0.89 0.88 3.7 1.17 13 6.01 4.20 14.4 7 22 21 19 100 1.23 0.41 1.15 119 104 47 49 68 1.481 0.1 1.27 1.39 1092 0.84 0.45 152 101 109 143 16 163 1.481 0.1 1.27 1.09 1.34 115 119 16</td><td>Major Constituents (in %) Trace elements (in ppm) Aloo P_1O_8 Nado C1 FeO TIO N C N Sr Zr Job P_1O_8 Nado C1 FeO TIO N A S1 G1 G0 S1 S1</td><td></td><td>SiO₂</td><td>65.9</td><td>12</td><td>55.7</td><td>64.20</td><td>27</td><td>53</td><td>44.7</td><td>48</td><td>47.6</td><td>34.9</td><td>38</td><td>49.8</td><td>52.1</td><td>35.4</td><td>31.6</td><td>18.7</td><td>22.6</td><td>41.5</td><td>38.92</td></t<>	Major Constituents (in %) Trace elements (in %) Ab0. P.0.8 Na.0 C1 Fr.0.1 T0.2 S0.3 1.4.7 0.98 4.1 4.2 189 4.3 4.1 10.3 2.61 0.38 0.5 0.23 14.7 0.98 4.1 4.2 189 4.3 4.1 100 1.07 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 1.23 0.18 0.89 0.88 3.7 1.17 13 6.01 4.20 14.4 7 22 21 19 100 1.23 0.41 1.15 119 104 47 49 68 1.481 0.1 1.27 1.39 1092 0.84 0.45 152 101 109 143 16 163 1.481 0.1 1.27 1.09 1.34 115 119 16	Major Constituents (in %) Trace elements (in ppm) Aloo P_1O_8 Nado C1 FeO TIO N C N Sr Zr Job P_1O_8 Nado C1 FeO TIO N A S1 G1 G0 S1		SiO ₂	65.9	12	55.7	64.20	27	53	44.7	48	47.6	34.9	38	49.8	52.1	35.4	31.6	18.7	22.6	41.5	38.92
Constituents (in %6) Trace elements P505 Na ₃ O C1 Fe ₁ O ₂ TiO ₂ SO ₃ LO1. Co Ni Cu Zn 0.38 0.5 0.23 14.7 0.98 4.1 4.2 189 43 45 41 0.1 0.4 0.23 14.7 0.98 4.1 4.2 189 43 41 0.18 0.89 0.08 3.7 1.17 13 6.4 47 32 21 19 0.18 0.89 0.08 3.7 1.17 13 6.4 47 32 21 19 0.23 1.20 1.33 6.01 1.33 6.01 4.20 19 30 71 0.51 1.27 1.74 10.35 1.08 0.14 11.5 119 109 53 117 0.51 2.41 10.3 0.45 15.5 ND 110 35 117 <td>Constituents (in %) Trace elements (in %) P₂Os Na₂O C1 Fe,0. TO2 SO3 LO.1. C0 Ni Cu Zn Sr 0.38 0.5 0.23 14.7 0.98 4.1 4.2 189 43 45 41 163 0.11 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 0.18 0.89 0.03 1.33 6.01 4.33 6.01 4.3 47 32 114 103 0.18 0.89 0.08 1.17 13 6.4 47 32 114 100 0.23 2.17 3.82 0.03 14.8 15.2 ND 77 49 68 0.1 1.27 1.74 10.35 108 0.11 123 114 120 208 134.3 0.71 10.3 10.45 15</td> <td>Trace elements (in $\sqrt{6}$) P₁α Trace elements (in γ ppm) P₁α Na₁α C1 F₂α Tiol Sr Zr P₁α 0.32 0.23 14.7 0.98 4.1 4.2 189 4.3 4.1 163 375 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 348 0.1 0.4 0.23 20.61 1.83 6.01 4.20 189 4.3 4.1 163 375 0.1 0.24 0.3 1.3 6.01 4.20 104 37.50 32.06 134.3 292.65 0.1 127 134 152 ND 110 35 134 357 392.66 37.63 373 0.51 127 382 0.31 134 152 ND 110 35 117 163 373 373 <td>Major</td><td>Al₂O₃</td><td>2.61</td><td>1.07</td><td>12.3</td><td>5.33</td><td>12.85</td><td>14.81</td><td>13.62</td><td>13.96</td><td>14.54</td><td>17.43</td><td>16.12</td><td>14.97</td><td>15.23</td><td>17.34</td><td>16.51</td><td>6.82</td><td>8.38</td><td>7.7</td><td>13.59</td></td>	Constituents (in %) Trace elements (in %) P ₂ Os Na ₂ O C1 Fe,0. TO2 SO3 LO.1. C0 Ni Cu Zn Sr 0.38 0.5 0.23 14.7 0.98 4.1 4.2 189 43 45 41 163 0.11 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 0.18 0.89 0.03 1.33 6.01 4.33 6.01 4.3 47 32 114 103 0.18 0.89 0.08 1.17 13 6.4 47 32 114 100 0.23 2.17 3.82 0.03 14.8 15.2 ND 77 49 68 0.1 1.27 1.74 10.35 108 0.11 123 114 120 208 134.3 0.71 10.3 10.45 15	Trace elements (in $\sqrt{6}$) P ₁ α Trace elements (in γ ppm) P ₁ α Na ₁ α C1 F ₂ α Tiol Sr Zr P ₁ α 0.32 0.23 14.7 0.98 4.1 4.2 189 4.3 4.1 163 375 0.1 0.4 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 100 348 0.1 0.4 0.23 20.61 1.83 6.01 4.20 189 4.3 4.1 163 375 0.1 0.24 0.3 1.3 6.01 4.20 104 37.50 32.06 134.3 292.65 0.1 127 134 152 ND 110 35 134 357 392.66 37.63 373 0.51 127 382 0.31 134 152 ND 110 35 117 163 373 373 <td>Major</td> <td>Al₂O₃</td> <td>2.61</td> <td>1.07</td> <td>12.3</td> <td>5.33</td> <td>12.85</td> <td>14.81</td> <td>13.62</td> <td>13.96</td> <td>14.54</td> <td>17.43</td> <td>16.12</td> <td>14.97</td> <td>15.23</td> <td>17.34</td> <td>16.51</td> <td>6.82</td> <td>8.38</td> <td>7.7</td> <td>13.59</td>	Major	Al ₂ O ₃	2.61	1.07	12.3	5.33	12.85	14.81	13.62	13.96	14.54	17.43	16.12	14.97	15.23	17.34	16.51	6.82	8.38	7.7	13.59
Trace elemetical Na ₂ O CI Fe ₂ O ₂ TiO ₂ SO ₃ LO1. Co Ni Cu Zn 0.5 0.23 14.7 0.98 4.1 4.2 189 43 45 41 0.6 0.13 20.61 1.83 0.93 1.99 78 ND 30 71 0.89 0.08 3.7 1.17 13 6.01 4.20 109 78 ND 70 71 79 71 0.89 0.08 3.7 1.17 13 6.01 4.20 104 47 49 1.27 1.74 10.35 1.98 0.14 11.5 119 109 43.67 2.127 1.74 10.35 1.98 0.14 11.5 110 35 117 2.292 3.84 8.67 0.7 0.06 15.1 129 45 47 2.41 10.35 10.9 11.5<	Trace elements (in %)NagoC1Fe,0.TiOSO.L.O.I.C0NiCuZnSr0.50.2314.70.984.14.21894345411630.40.2314.70.984.14.21894345411630.40.2320.611.830.931.9978ND30711000.890.083.71.17136.014.20104.637.5032.0043.67134.30.600.181.3.001.336.014.20104.637.5032.0043.67134.30.511.30.031.4815.2ND77571092081.271.7410.351.080.1411.51191044749681.271.7410.351.080.1411.51191044749682.413.9710.920.840.4515ND11035117962.413.9710.920.840.4515128704074532.413.9710.920.840.4515128704074532.413.9710.920.840.1411.51191044749682.4110.3210.920.840.1411.512870	Trace elements (in γ_6) Na ₂ O CI Fe ₁₀ SO ₃ LO.1 Co Ni Cu Zr 0.5 0.23 147 0.98 4.1 4.2 189 4.3 4.5 4.1 10.3 375 0.89 0.33 1.17 1.3 6.01 4.20 199 78 ND 30 71 100 348 0.89 0.08 3.7 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.6 0.89 0.08 1.37 1.38 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.6 1.27 1.74 10.35 1.08 0.14 11.5 119 104 47 49 68 33 137 2.21 1.17 1.35 ND 110 35 117 165 189 2.241 3.97 0.93 1	Const	P2O5	0.38	0.1	0.18	0.22	0.59	0.1	0.51	0.2	0.54	1.01	0.74	0.55	0.68	0.24	0.2	0.13	0.2	0.77	0.46
S (iii %) Trace element CI Fe.0. TiO, SO, L.O.I. Co Ni Cu Zn 0.23 14.7 0.98 4.1 4.2 189 43 45 41 0.23 14.7 0.98 4.1 4.2 189 43 45 41 0.23 20.61 1.83 0.93 1.99 78 ND 30 71 0.23 20.61 1.83 0.93 1.99 78 ND 70 45 41 1.70 3.82 0.03 14.8 15.2 ND 170 43 43 45 41 7.17 3.82 0.03 14.8 15.2 ND 77 57 109 7.17 3.82 0.03 14.8 15.2 ND 77 57 109 7.17 3.82 0.14 11.5 119 77 57 109 3.71	(ii) Trace elements (ii) (i) Trace all ments (ii) Trace elements (ii) (1)	S (in %) Trace elements (in ppm) S (in %) Trace elements (in ppm) C1 Fe,0. TiO_2 SO_3 LO.1. C0 Ni Zn Zn 0.23 14.7 0.98 4.1 4.2 189 43 45 41 163 375 0.23 20.61 1.83 0.93 1.99 78 NID 30 71 100 348 0.08 3.7 1.17 13 6.4 4.7 32 21 19 140 155 0.18 13.00 1.33 6.01 4.20 1046 37.50 32.06 134.3 292.6 7.17 3.82 0.03 14.4 11.5 119 104 47 49 68 245 3.71 10.92 0.84 0.45 157 ND 110 357 137 3.81 10.92 0.84 0.45 153 121 90 157 137	ituent	Na2O	0.5	0.4	0.89	0.60	5.78	1.27	2.41	2.92	3.82	0.49	1.02	-	1.14	3.37	3.32	18.65	10.08	1.87	4.08
Feron Trace element Feron TiO2 SO3 L.O.I. Co Ni Cu Zn 14.7 0.98 4.1 4.2 189 43 45 41 20.61 1.83 0.93 1.99 78 ND 30 71 3.7 1.17 13 6.01 4.20 1046 37.50 32.00 43.67 3.7 1.17 13 6.01 4.20 1046 37.50 32.00 43.67 3.7 1.17 13 6.01 4.20 1046 37.50 32.00 43.67 3.82 0.03 14.8 15.2 ND 109 37.60 43.67 3.867 0.71 11.5 119 104 47 49 10.35 1.08 0.14 11.5 119 107 32.00 31.67 10.35 0.71	Fero. Tio. SO. Lot. Co Ni Cu Sn 14.7 0.98 4.1 4.2 189 43 45 41 163 14.7 0.98 4.1 4.2 189 43 45 41 163 20.61 1.83 0.93 1.99 78 ND 30 71 100 3.7 1.17 13 6.01 4.20 1046 37.50 32.00 43.67 14.3 3.82 0.03 14.8 15.2 ND 77 57 109 208 10.92 0.84 0.45 15 ND 110 35 117 165 3.85 0.03 14.8 15.2 ND 110 35 117 165 3.867 0.71 0.96 15.1 199 53 134 37 9.61 0.81 1.1.5 112 129 57 134 126 <td>Tack Track Track Track Tin Sr Zr 14.7 0.98 4.1 4.2 189 43 45 41 163 375 14.7 0.98 4.1 4.2 189 43 45 41 163 375 20.61 1.83 0.93 1.99 78 ND 30 71 100 348 3.7 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.66 3.82 0.03 14.8 15.2 ND 77 57 109 208 58 10.35 1.08 0.14 11.5 119 104 47 49 68 245 10.35 1.08 0.14 11.5 110 134 10 157 10.35 1.08 0.14 11.5 110 157 150 131 10.35 1.08 0.71</td> <td>s (in %</td> <td>G</td> <td>0.23</td> <td>0.23</td> <td>0.08</td> <td>0.18</td> <td>7.17</td> <td>1.74</td> <td>3.97</td> <td>3.84</td> <td>3.72</td> <td>0.31</td> <td>0.23</td> <td>1.28</td> <td>1.52</td> <td>2.9</td> <td>3.44</td> <td>14</td> <td>8.11</td> <td>3.24</td> <td>3.96</td>	Tack Track Track Track Tin Sr Zr 14.7 0.98 4.1 4.2 189 43 45 41 163 375 14.7 0.98 4.1 4.2 189 43 45 41 163 375 20.61 1.83 0.93 1.99 78 ND 30 71 100 348 3.7 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.66 3.82 0.03 14.8 15.2 ND 77 57 109 208 58 10.35 1.08 0.14 11.5 119 104 47 49 68 245 10.35 1.08 0.14 11.5 110 134 10 157 10.35 1.08 0.14 11.5 110 157 150 131 10.35 1.08 0.71	s (in %	G	0.23	0.23	0.08	0.18	7.17	1.74	3.97	3.84	3.72	0.31	0.23	1.28	1.52	2.9	3.44	14	8.11	3.24	3.96
Tio. So.a Lo.i. Co Ni Cu Zn 0.98 4.1 4.2 189 43 45 41 1.83 0.93 1.99 78 ND 30 71 1.83 0.93 1.99 78 ND 30 71 1.17 13 6.01 4.20 189 43 45 41 1.13 6.01 4.20 104.6 37.50 32.00 43.67 0.03 14.8 15.2 ND 77 57 109 1.13 15.1 104 47 49 109 0.84 0.45 15 ND 110 35 117 0.84 0.45 15 ND 104 47 49 0.84 0.45 15 ND 110 35 117 0.84 0.45 15 ND 128 40 74 0.71 0.1	Trace elements (interpretation) TiO2 SO3 L.O.I. CO Ni Cu Sn Sr 0.98 4.1 4.2 189 43 45 41 163 1.83 0.93 1.99 78 ND 30 71 100 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 0.03 14.8 15.2 ND 77 57 109 208 0.03 14.8 15.2 ND 104 47 49 68 0.03 14.8 15.2 ND 104 47 49 68 0.84 0.45 15 ND 104 47 49 68 0.84 0.45 15 ND 110 35 117 90 0.75 0.06 <td>Tiol SO3 Loll Co Ni Cu Zn Sr Zr 0.98 4.1 4.2 189 4.3 4.5 4.1 163 375 0.98 4.1 4.2 189 4.3 4.5 4.1 163 375 1.83 0.93 1.99 78 ND 30 71 100 348 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.6 0.03 14.8 15.2 ND 177 57 109 208 58 0.03 14.8 15.2 ND 110 35 117 165 189 0.03 14.8 15.2 ND 110 35 137 292.6 0.81 0.14 11.5 119 37 392 317 392 317 0.71 0.06 15.1 128 70 240 134<td>) 1</td><td>Fe₂O₃</td><td>14.7</td><td>20.61</td><td>3.7</td><td>13.00</td><td>3.82</td><td>10.35</td><td>10.92</td><td>8.67</td><td>9.61</td><td>7.07</td><td>7.69</td><td>8.61</td><td>7.63</td><td>5.95</td><td>5.13</td><td>2.15</td><td>3.45</td><td>3.99</td><td>6.79</td></td>	Tiol SO3 Loll Co Ni Cu Zn Sr Zr 0.98 4.1 4.2 189 4.3 4.5 4.1 163 375 0.98 4.1 4.2 189 4.3 4.5 4.1 163 375 1.83 0.93 1.99 78 ND 30 71 100 348 1.17 13 6.01 4.20 104.6 37.50 32.00 43.67 134.3 292.6 0.03 14.8 15.2 ND 177 57 109 208 58 0.03 14.8 15.2 ND 110 35 117 165 189 0.03 14.8 15.2 ND 110 35 137 292.6 0.81 0.14 11.5 119 37 392 317 392 317 0.71 0.06 15.1 128 70 240 134 <td>) 1</td> <td>Fe₂O₃</td> <td>14.7</td> <td>20.61</td> <td>3.7</td> <td>13.00</td> <td>3.82</td> <td>10.35</td> <td>10.92</td> <td>8.67</td> <td>9.61</td> <td>7.07</td> <td>7.69</td> <td>8.61</td> <td>7.63</td> <td>5.95</td> <td>5.13</td> <td>2.15</td> <td>3.45</td> <td>3.99</td> <td>6.79</td>) 1	Fe ₂ O ₃	14.7	20.61	3.7	13.00	3.82	10.35	10.92	8.67	9.61	7.07	7.69	8.61	7.63	5.95	5.13	2.15	3.45	3.99	6.79
SO.3 L.O.1. Co Ni Cu Zn 4.1 4.2 189 43 45 41 4.1 4.2 189 43 45 41 9.93 1.99 78 ND 30 71 9.93 1.99 78 ND 30 71 9.93 1.99 78 ND 30 71 13 6.4 47 32 21 19 14.8 15.2 ND 77 57 109 14.8 15.2 ND 110 35 117 9.14 11.5 119 104 47 49 9.14 11.5 119 104 47 49 9.15 ND 110 35 117 9.14 11.5 119 14 47 49 9.15 ND 1103 65 131 17 9.1 12.5	SO. L.O.I. Co Ni Cu Zn Sr 4.1 4.2 189 43 45 41 163 4.1 4.2 189 43 45 41 163 0.93 1.99 78 ND 30 71 100 13 6.4 47 32 21 19 140 13 6.91 4.20 104.6 37.50 32.00 43.67 134.3 14.8 15.2 ND 77 57 109 208 0.14 11.5 119 104 47 49 68 0.14 11.5 119 104 35 117 165 0.15 128 70 40 40 68 69 0.45 15 ND 110 35 117 165 0.16 12.1 128 70 40 70 70 1.55 1	SO.3 L.O.1. Co Ni Cu Zn Zr 4.1 4.2 189 43 45 41 163 375 4.1 4.2 189 43 45 41 163 375 0.93 1.99 78 ND 30 71 100 348 13 6.4 47 32 21 19 140 155 0.93 1.99 78 ND 70 32.00 43.67 134.3 292.6 14.8 15.2 ND 119 104 47 49 68 245 0.14 11.5 119 104 47 49 68 245 0.0 15.1 128 70 40 74 53 137 0.06 15.1 128 70 35 117 90 150 0.14 11.5 110 35 117 90 150 <td< td=""><td>時間に</td><td>TiO₂</td><td>0.98</td><td>1.83</td><td>1.17</td><td>1.33</td><td>0.03</td><td>1.08</td><td>0.84</td><td>0.7</td><td>0.81</td><td>0.52</td><td>0.72</td><td>0.94</td><td>1.13</td><td>0.67</td><td>0.53</td><td>0.17</td><td>0.25</td><td>0.25</td><td>0.62</td></td<>	時間に	TiO ₂	0.98	1.83	1.17	1.33	0.03	1.08	0.84	0.7	0.81	0.52	0.72	0.94	1.13	0.67	0.53	0.17	0.25	0.25	0.62
LOL. Co Ni Cu Zn 4.2 189 43 45 41 1.99 78 ND 30 71 6.4 47 32 21 19 6.4 47 32 21 19 6.4 47 32 21 19 15.2 ND 77 57 109 15.2 ND 77 57 109 15.1 194 47 49 17 15.1 128 70 40 74 15.1 128 70 40 74 15.1 128 70 40 74 15.1 138 63 184 12.53 151 99 53 171 12.51 138 63 184 171 12.51 133 65 52 191 15.9 133 61 67 91	Lou. Co Ni Cu Zn Sr 4.2 189 43 45 41 163 4.2 189 43 45 41 163 1.99 78 ND 30 71 100 6.4 47 32 21 19 140 6.4 47 32 21 19 140 15.2 ND 77 57 109 208 15.2 ND 110 35 117 165 15.1 128 70 40 68 134.3 15.1 128 70 40 68 117 15.1 128 70 40 73 109 15.1 128 70 40 74 53 15.1 128 70 40 74 53 15.3 151 50 77 90 15.53 110 50 <td>Lou. Co Ni Cu Sr Zr 4.2 189 43 45 41 163 375 4.2 189 43 45 41 163 375 1.99 78 ND 30 71 100 348 6.4 47 32 21 19 140 155 1.99 77 32 21 19 140 155 4.20 104.6 37.50 32.00 43.67 134.3 292.66 15.1 119 104 47 49 68 58 58 15.1 128 70 40 74 53 137 15.1 128 70 40 68 245 189 15.1 128 70 40 68 245 189 15.1 121 123 110 26 189 245 15.1 128 70<td></td><td>s03</td><td>4.1</td><td>0.93</td><td>13</td><td>6.01</td><td>14.8</td><td>0.14</td><td>0.45</td><td>0.06</td><td>0.1</td><td>2.16</td><td>2.05</td><td>0.94</td><td>1.57</td><td>3.6</td><td>0.79</td><td>14.9</td><td>3.23</td><td>0.18</td><td>3.21</td></td>	Lou. Co Ni Cu Sr Zr 4.2 189 43 45 41 163 375 4.2 189 43 45 41 163 375 1.99 78 ND 30 71 100 348 6.4 47 32 21 19 140 155 1.99 77 32 21 19 140 155 4.20 104.6 37.50 32.00 43.67 134.3 292.66 15.1 119 104 47 49 68 58 58 15.1 128 70 40 74 53 137 15.1 128 70 40 68 245 189 15.1 128 70 40 68 245 189 15.1 121 123 110 26 189 245 15.1 128 70 <td></td> <td>s03</td> <td>4.1</td> <td>0.93</td> <td>13</td> <td>6.01</td> <td>14.8</td> <td>0.14</td> <td>0.45</td> <td>0.06</td> <td>0.1</td> <td>2.16</td> <td>2.05</td> <td>0.94</td> <td>1.57</td> <td>3.6</td> <td>0.79</td> <td>14.9</td> <td>3.23</td> <td>0.18</td> <td>3.21</td>		s03	4.1	0.93	13	6.01	14.8	0.14	0.45	0.06	0.1	2.16	2.05	0.94	1.57	3.6	0.79	14.9	3.23	0.18	3.21
Trace element Co Ni Cu Zn 189 43 45 41 78 ND 30 71 47 32 21 19 47 32 21 19 47 32 21 19 104.6 37.50 32.00 43.67 ND 77 57 109 119 104 47 49 ND 110 35 117 128 70 40 74 151 99 53 171 ND 138 63 184 ND 138 63 184 ND 99 53 171 151 99 53 171 ND 138 63 184 ND 95 52 191 103 97 54 124 ND 97 54 124 ND 97 54 124 ND 97 54 73 ND 97 54 73 ND 88 35 149 ND 88 35 <	Trace elements (in Co Ni Zn Sr 189 43 45 41 163 78 ND 30 71 100 47 32 21 19 140 47 32 21 19 140 47 37.50 32.00 43.67 134.3 ND 77 57 109 208 119 104 47 49 68 ND 110 35 117 165 119 104 47 49 68 ND 110 35 171 165 151 99 53 171 90 ND 138 63 184 121 ND 138 63 184 121 ND 199 55 191 709 ND 195 55 191 709 ND 90	Trace elements (in ppm) Sr Sr S S 189 43 45 41 163 375 78 ND 30 71 100 348 47 32 21 19 140 155 104.6 37.50 32.00 43.67 134.3 292.66 ND 77 57 109 208 58 ND 77 57 109 208 58 ND 110 35 117 165 189 ND 110 35 117 90 150 ND 138 63 184 121 91 ND 138 63 184 121 91 ND 138 63 184 121 91 ND 138 63 184 123 93 ND 90 55 191		I.0.1.	4.2	1.99	6.4	4.20	15.2	11.5	15	15.1	12.53	22.02	19.06	15.9	14	21.5	20.45	12.5	21.45	25	17.23
Trace element Ni Cu Zn 43 45 41 43 45 41 ND 30 71 9 37.50 32.00 43.67 19 37.50 32.00 43.67 109 77 57 109 117 70 40 74 49 110 35 117 70 40 74 49 110 35 171 138 63 184 99 53 171 117 55 191 117 55 191 117 55 191 97 54 124 97 54 124 97 54 124 97 54 124 97 35 149 87 35 149 88.29 50.69 119.5 <td>Trace elements (in Ni Cu Zn Sr 43 45 41 163 43 45 41 163 NID 30 71 100 32 21 19 140 37.50 32.00 43.67 134.3 37.50 32.00 43.67 134.3 77 57 109 208 110 35 117 165 70 40 74 53 99 53 171 90 110 35 171 90 138 63 184 121 93 63 184 121 93 63 184 121 93 69 131 50 93 69 123 709 94 124 730 709 93 109 69 175 94 124</td> <td>Trace elements (in ppm) Ni Cr 43 45 41 163 375 43 45 41 163 375 32 21 19 140 155 37.50 32.00 43.67 134.3 292.6 37.50 32.00 43.67 134.3 292.6 77 57 109 208 58 104 47 49 68 245 110 35 117 165 189 70 40 74 53 137 99 53 171 90 150 110 35 171 90 150 138 63 184 121 91 93 55 131 50 220 117 55 131 50 216 91 54 124 779 383 117 5</td> <td></td> <td>Co</td> <td>189</td> <td>78</td> <td>47</td> <td>104.6</td> <td>QN</td> <td>119</td> <td>QN</td> <td>128</td> <td>151</td> <td>QN</td> <td>QN</td> <td>123</td> <td>161</td> <td>QN</td> <td>QN</td> <td>QN</td> <td>QN</td> <td>70</td> <td>125.3</td>	Trace elements (in Ni Cu Zn Sr 43 45 41 163 43 45 41 163 NID 30 71 100 32 21 19 140 37.50 32.00 43.67 134.3 37.50 32.00 43.67 134.3 77 57 109 208 110 35 117 165 70 40 74 53 99 53 171 90 110 35 171 90 138 63 184 121 93 63 184 121 93 63 184 121 93 69 131 50 93 69 123 709 94 124 730 709 93 109 69 175 94 124	Trace elements (in ppm) Ni Cr 43 45 41 163 375 43 45 41 163 375 32 21 19 140 155 37.50 32.00 43.67 134.3 292.6 37.50 32.00 43.67 134.3 292.6 77 57 109 208 58 104 47 49 68 245 110 35 117 165 189 70 40 74 53 137 99 53 171 90 150 110 35 171 90 150 138 63 184 121 91 93 55 131 50 220 117 55 131 50 216 91 54 124 779 383 117 5		Co	189	78	47	104.6	QN	119	QN	128	151	QN	QN	123	161	QN	QN	QN	QN	70	125.3
Trace element Cu Zn 45 41 45 41 30 71 21 19 32.00 43.67 31 19 32.00 43.67 31 19 32.00 43.67 32.00 43.67 33.00 43.67 33.117 49 40 74 40 74 53 117 55 191 55 191 55 131 55 131 55 124 ND 85 24 73 35 149 35 149 35 119.5	Trace elements (in Cu Zn Sr 45 41 163 30 71 100 21 19 140 21 19 140 32.00 43.67 134.3 32.00 43.67 134.3 32.01 43.67 134.3 32.00 43.67 134.3 32.01 43.67 134.3 35 109 208 40 74 53 53 171 90 63 184 121 55 191 109 55 191 109 55 131 50 54 124 750 54 124 750 75 91 779 69 125 175 54 124 730 75 134 730 740 85 118 75 73 404 75 149 18 75 73 404 75 149 18 75 149 18 75 149 18 75 <t< td=""><td>Trace elements (in ppm) Cu Zn Sr Zr 45 41 163 375 45 41 163 375 30 71 100 348 21 19 140 155 32.00 43.67 134.3 292.66 32.00 43.67 134.3 292.65 32.01 43.67 134.3 292.65 35 117 165 189 35 117 165 189 35 117 165 189 40 74 53 137 53 171 90 150 63 184 121 91 55 191 109 188 55 191 109 188 55 191 779 383 69 125 175 100 54 124 750 216 75 91 779 383 54 124 750 216 749 85 188 29 55 173 404 ND 54 73 404 ND</td><td></td><td>Ni</td><td>43</td><td>QN</td><td>32</td><td>37.50</td><td>77</td><td>104</td><td>110</td><td>70</td><td>66</td><td>138</td><td>95</td><td>117</td><td>50</td><td>109</td><td>76</td><td>34</td><td>49</td><td>87</td><td>88.29</td></t<>	Trace elements (in ppm) Cu Zn Sr Zr 45 41 163 375 45 41 163 375 30 71 100 348 21 19 140 155 32.00 43.67 134.3 292.66 32.00 43.67 134.3 292.65 32.01 43.67 134.3 292.65 35 117 165 189 35 117 165 189 35 117 165 189 40 74 53 137 53 171 90 150 63 184 121 91 55 191 109 188 55 191 109 188 55 191 779 383 69 125 175 100 54 124 750 216 75 91 779 383 54 124 750 216 749 85 188 29 55 173 404 ND 54 73 404 ND		Ni	43	QN	32	37.50	77	104	110	70	66	138	95	117	50	109	76	34	49	87	88.29
eleme Za 41 41 41 19 19 117 117 117 117 117 117 117 117	clements (in Zn Sr 41 163 41 163 71 100 19 140 43.67 134.3 49 68 117 165 117 165 117 165 117 165 117 165 171 90 184 121 191 109 131 50 91 779 91 779 124 750 85 118 73 404 149 18 73 404 149 18 149 18 73 404 149 18 149 18 149 18	elements (in ppm) Zn Sr Zr 41 163 375 41 163 375 41 163 375 71 100 348 19 140 155 43.67 134.3 292.6 109 208 58 49 68 245 117 165 189 117 165 189 74 53 137 171 90 150 184 121 91 191 109 168 191 109 333 131 50 220 131 50 216 131 50 216 124 750 216 124 750 216 124 73 404 133 404 100 149 18 60 149	Trace	C	45	30	21	32.00	57	47	35	40	53	63	52	55	75	69	54	QN	24	35	50.69
	nts (in 163 163 163 194.3 134.3 134.3 190 68 68 68 68 68 68 68 68 68 165 165 109 109 109 1750 118 118 118 118 118 118 118 1251 1251 1	nts (in ppm) sr Zr 163 375 163 375 163 375 163 375 140 155 134.3 292.6 208 58 208 58 208 58 208 58 208 58 208 58 208 58 208 58 209 189 165 189 53 137 90 150 103 150 109 118 109 118 109 118 779 383 779 383 175 100 750 216 118 29 118 29 118 29 118 29 118 00 118 60 </td <td>eleme</td> <td>Zn</td> <td>41</td> <td>11</td> <td>61</td> <td>43.67</td> <td>109</td> <td>49</td> <td>117</td> <td>74</td> <td>171</td> <td>184</td> <td>161</td> <td>131</td> <td>91</td> <td>125</td> <td>124</td> <td>85</td> <td>73</td> <td>149</td> <td>119.5</td>	eleme	Zn	41	11	61	43.67	109	49	117	74	171	184	161	131	91	125	124	85	73	149	119.5
Ppm) Zr Cr 375 84 375 84 375 84 375 84 375 84 375 84 375 84 375 84 375 84 375 84 376 119 292.6 119 292.6 110 189 110 189 110 150 143 91 422 91 422 118 235 219 263 383 185 100 263 216 285 216 285 216 285 216 287 216 287 216 287 216 287 216 287 80 207	Cr 84 84 154 154 119 119 119 110 110 110 110 110 110 113 143 143 143 143 143 143 143 143 120 120 120 120 120 120 120 120 120 120			Mn	78	53	59	63.33	161	101	150	76	127	351	276	125	54	80	79	83	165	46	133.8

The trace element distribution show higher contents of Co, Ni, Cu, Zn, Zr and Mn in the upper sandstone beds of Tarif Formation show increase upward in the Tarif sandstone beds. The highly ultramafic elements Ni, Cu and Cr in the sandstone and shale samples (Dakhla Shale and Qusier Variegated Shale) is duo to their ultramafic source, while they are belong limited detection of the applied technique analysis.

Pettijohn (1975) mentioned that the SiO_2/Al_2O_3 ratio of the shale reflect the grains size, where the higher the coarser the grain size and vice versa. The shale samples both of Tarif and Duwi formationsare the finest, while the shale of the Qusier Variegated Shale and Dakhla Shale are of larger size (Table 3).

Pettijohn et al., (1973) reported that the calcium and magnesium elements originate as chemical precipitates in sandstones primarily as carbonates and much may be diagenetic. The ratio of CaO/MgO in the sandstone samples in s. no. 1, 3 and 6 are 5.58, 2.09 and 18.07 respectively, so the CaO/MgO ratio of the studied sandstone doesn't show any particular trend for distribution and this variation can be attributed to the relative position of Upper Cretaceous sandstone rock units form shore line. **Trask (1939)** stated that the higher the salinity, the greater the content of CaCO₃.

Millot (1970) stated that clays contain K₂O/Na₂O ratio equals 2.94. As well, Weaver (1967) the K/Na and K/Mg ratios are equally important, where low ratios favour the formation of montmorillonite (which is recorded in XRD) and chlorite materials, while high ratios favour the formation of illite. Also high values are more likely to occur in continental than marine environments. In the studied shale samples, the K₂O/Na₂O ratio is always lies less than the published ratio as it shown in table 4 and low ratios maybe due to that the montmorillonite is the main clay mineral and the absence of illite as it resulted in XRD.

Table 3: The average of SiO_2/Al_2O_3 and
K ₂ O/Na ₂ Oratios in the shale samples

Formation	SiO ₂ /Al ₂ O ₃	K ₂ O/Na ₂ O		
Tarif Formation	2.10	0.10		
Qusier Variegated Shale	3.39	1.05		
Duwi Formation	2.17	1.21		
Dakhla Shale	3.38	1.33		
Esna Shale	2.64	0.13		

4- Tectonic setting

Figure 6illustrates the ternary plot of SiO_2 -Al₂O₃-Fe₂O₃of sandstone samplespointing to that the Cenomanian Tarif Formation sandstones mainly are subgreywacke(Moore and Dennen 1970)

Pettijohn et al., (1973) proposed a classification for the sandstones based on the relationship between Log $(SiO_2 / A1_2O_3)$ and Log (Na_2O / K_2O) . The relationship between Log $(SiO_2 / A1_2O_3)$ and Log (Na_2O / K_2O) for Tarif sandstone samples shown in Fig.7 revealed that; the samples ranged from sublithic-arenite to lithic-arenite.

Blatt et al., (1980) proposed another classification for the sandstones based on their chemical composition in relation to tectonic setting. He added that a plot of Fe₂O₃, MgO, Na₂O and K₂O on a ternary diagram Fig.8 makes a fairly effective separation, with some overlap, among eugeosynclinal sandstones greywacke) (mostly taphrogeosynclinal sandstones (mostly arkoses) and exogeosynclinal sandstones (mostly lithic sandstones). The relationships suggested by Blatt et al., (1980), it seems that the Tarif Formation sandstone samples eu-geosyncline sediments.

Figure 9 shows a log-log plot of (SiO_2/Al_2O_3) vs. (Fe_2O_3/K_2O) after **Herron** (1988), which reflect that the sandstone and shale samples of the Tarif Formation are Fesand and Fe-shale, due to the recorded of high iron oxides content, and most of the shales of Qusier Variegated, Duwi, Dakhla and Esna formations of the Wadi Qwieh-Wadi Abu Hamra area are plot in the shale field.

Fig.6: Ternary plot of Si -Al -Fe of the studied sandstone samples (after Moor and Dennen, 1970)

Fig.8: Chemical composition of the studied sandstone samples of the Tarif sandstone in relation to tectonic setting (after **Blatt et al., 1980**)

Fig. 9: shows a log-log plot of (SiO_2/Al_2O_3) vs. (Fe₂O₃/K₂O) after **Herron (1988)**,

CONCLUSIONS

The clastic sedimentary rocks of the Upper Cretaceous inWadi Qwieh – Wadi Abu Hamra area, shows that the following results: 1- the lithofacies type of the sandstone samples in Tarif Formation are quartz arenite quartz arenite cemented by iron oxides and silica. 2-The X-ray diffraction analysis of the clastic rocksrecorded that the main mineral constituents is quartz, while hematite, gypsum and microcline are less abundant, 3- The oriented shale samples show that the most chief clay minerals detected are montmorillonite (smectite) and kaolinite.4- Geochemically, the environment of deposition of Upper Cretaceous sandstones was not deep, also indicate occasionallyevaporational of studied shale is deposited in semi-restricted environment.

REFERENCES

- ABOU EL-ANWAR, E. A. (2017): "Mineralogical, petrographical, geochemical, diagenesis and provenance of the Cretaceous Black Shales, Duwi Formation at Quseir-Safaga, Red Sea, Egypt Egyptian." Jour. of Petroleum No. 26, pp. 915–926.
- ABOU EL-ANWAR, E. A., MEKKY, H. S., & ABDEL WAHAB, W. (2018): "Mineralogy and depositional environment of black shales of the Duwi Formation, Quseir area, Red Sea coast, Egypt." Carbonates and Evaporites, 10p.
- AMERICAN SOCIETY OF TESTING MATERIAL (A. S. T. M.)(1960): "Index to the powder diffraction file." A. S. T. M., special technical pub.,
- **BISCAYE, B. E. (1965):** "Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans." Geol. Soc. America Bull. V. 76, pp. 803-832.
- BLATT, H., MIDDLETON, G. & MURRAY, R. (1980): "Origin of sedimentary rocks." Printed Hall Inc. Englewood Cliffs. New Jersey, 781p.
- **BROWN, C. (1961):** "The X-Ray identification and crystal structure of clay minerals." A symposium, the Mineralogical Soc., London, 544p.
- CONOCO, C. (1987): "Geological map of Egypt." NG 36 NE Quseir.
- DEER, E. A., HOWIE, A. A. & ZISSMAN, J. (1963): "Rock- forming minerals." V. 1, John Wiley and Sons, 528p.
- DROSTE, J. B. J, BHATTACHARYA, H. & SUNDERMAN, J.A., (1962): "Clay mineral alteration in some Indiana soils" clays and clay minerals (9th Nat. Conf. 1960), pp. 329-343.

- ELBADRY, O., HASSAAN, M., & ABU EL-ENEIN, F. (1983): "Sedimentology and Chemistry of the sandstone of Nubia facies." Fac. Sci. Zagazig Univ., Bull., No 5.
- ELKAMMAR, M. M., (2015): "Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt." Jour. of African Earth Sciences V. 104, pp. 19-26.
- HASSAAN, M. M., SAKR, S. M., ABDEL GAWAD, E., & EL-NAGGAR, I.M., (2016): "Reconnaissance lithologicalgeochemical exploration for organic matter and total organic carbon in the Late Campanian-Paleocene black shale belt, Upper Egypt." IJISET – International Jour. of Innovative Science, Engineering and Technology, V. 3 Issue 2, pp. 699-709.
- HERRON, M. M. (1988): "Geochemical classification of terrigenous sands and shales from core or log data." Jour. of Sedimentary Petrology 58, V.5, pp.820-829.
- HOWAIDY, A. A. (1979): "Stratigraphy of the Cretaceous and Lower Tertiary rocks in Wasif area, Eastern Desert, Egypt." Fac. Sci., Al-Azhar Univ., Cairo.
- KHALIL & MCCLAY (2002): "Extensional faultrelated folding, northwestern Red Sea, Egypt". Jour. of Structural Geology V. 24, pp.743-762.
- LEUNG, K. W., & LAI, C. Y. (1965): "A synthesis of the genesis of reddish brown latosols in Taiwan." Jour. of the Agricultural Association of China, New Series, V. 52, pp. 81-102.
- MILLOT, T. G. (1970): "Geology of clays." Springer. Verlag, New York, 429p.
- MOHR, E. C. J., VAN BAREN, F. A. & VAN SCHUYLENBORGH, J. (1971): "Tropical soils, The Hague, the Netherland: In: Seghal et. al. (1974), Genesis, transformation and classification of clay minerals in soil." Bull. Indian Soc. Soil Sc., V. 9, pp. 1-21.
- MOORE, B. R., & DENNEN, W. H. (1970): "A geochemical trend in silica-aluminum-iron ratios and the classification of clastic sediments." Jour. Sed. Petro. V. 40, 1147p.
- PETTIJOHN, F. J. (1975): "Sedimentary rocks." Harper & Brothers "New York, 718p.
- PETTIJOHN, F. J., FETTER, P. E., & SIEVER, R. (1973): "Sand and sandstones." New York: Springer Verlag, Berlin 618p.

- PURSER, B. H., & BOSENCE, D. W. J., (EDS), (1998): "Sedimentation and tectonics in Rift Basins: Red Sea- Gulf of Aden" 663p. London
- RAUCSIK, B., & VARGA, A. (2008): "Climateenvironmental controls on clay mineralogy of the Hettangian-Bajocian successions of the Mecsek Mountains, Hungary: An evidence for extreme continental weathering during the early Toarcian oceanic anoxic event." Paleogeography Paleoclimatology Paleoecology, V. 265, pp. 1-13.
- SAID, R. (1990): "The Geology of Egypt."A.A. Balkema, Rotterdam/Brookfield, 734p.
- TRASK, P. D. (1939): "Organic content of recent marine sediments." In Recent marine Sediments, symposium Soc. Eco. Paleontologists Mineralogists, spec. publ, No. 4. Tulsa pp. 428-453.
- WANG, H. M., & CHEN, S. H. (1988): "Mineralogical and chemical studies of gravel weathering and its relation to lateritic soil formation in the Linkou terrace." Tih-Chih, V. 8, pp. 27-47.
- WARD, W. C., MCDONALD, K. C. & MANSOUR, S. E. I. (1979): "The Nubia Formation of the Quseir Safaga area, Egypt, Geol. Surv. Egypt, V. 9, pp. 420-431.
- WEAVER, C. E. (1967): "Potassium, illite and the ocean: Geochem." Et. Cosmochim Acta, V. 31, pp. 2181- 2196.