POWER TRANSMISSION OF A PARTICLE BEAM MOVING IN A RESISTIVE CYLINDRICAL TUBE

AHMED M. AL-AL-KHATEEB AND NOUF K. AL-SALEEM

Department of physics, College of Education in Jubail, University of Dammam, Kingdom of Saudi Arabia

ABSTRACT

The radial power transmission resulting from a particle beam of parabolic (quadratic) transverse charge distribution have been studied theoretically. The particle beam is moving at constant speed down a resistive cylindrical pipe of finite wall thickness. The wave equations for the electromagnetic fields induced by the beam motion inside the cylindrical pipe have been derived and solved. The coefficient of radial power transmission through the beam-pipe wall have been obtained analytically and then analyzed numerically for different beam energies, different wall conductivities and different wave mode frequencies. The radial power transmission is found to increase with increasing beam energy, to decrease with increasing wall conductivity and it is higher for the wave modes of lower frequencies.

Key Words: Power Transmission, Waveguides

I. INTRODUCTION

Most frequently, we encounter circumstances in which good shielding against electromagnetic fields is highly desired [1, 2]. For shielding based on reflection losses, two or more metallic layers separated by dielectric fillings lead to multiple reflections and provide more effective shielding than the same thickness of metal in single shield [3]. Multiple shield concepts are used in environment which require magmatic shielding in strong electromagnetic signals. The interaction of the magmatic fields of currents in each conductor due the electromotive force induced by the magnetic flux linkage around the conductors [4–6]. Consequently, like in the case of skin effect, the apparent A.C. resistance of the conductors is increased and the strength of the this shape (or proximity) effect will usually depend on the wave frequency, the gap width between the conductors and on their arrangement. The current unbalance due to the proximity effect in multiple shields can be reduced by spacing the conductors as far apart as possible. Consequently, the skin effect becomes the predominant attenuation effect. In the opposite limit of conductors very close to each other, the apparent

A.C. resistance of the conductors is increased and shielding is predominantly due to the proximity effect [7–9]. In many cases, physical distance between the conductors will be enough to reduce their magnetic coupling to an acceptable levels. If two conductors are close to each other, their mutual inductance may perturb the current distribution and increase the effective resistance of the conductors. Reduction of the mutual inductance requires increasing the separation between conductors since the magnetic fields around the conductors are distance.

II. INDUCED ELECTROMAGNETIC FIELDS IN CYLINDRICAL TUBE

From Faradays and Ampere's laws in a linear conducting medium, we have the following wave equations for the magnetic induction \(B \) and electric field \(E \) [10, 11]:

\[
\vec{\nabla}^2 - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} - \mu_0 S \frac{\partial}{\partial t} \nabla \vec{B}(\vec{r},t) - \mu_0 \nabla \times \vec{j}_b(\vec{r},t)
\]

\[(1) \]

\[
\frac{\partial}{\partial t} \frac{\partial}{\partial t} - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} - \mu_0 S \frac{\partial}{\partial t} \nabla \vec{B}(\vec{r},t) - \mu_0 \nabla \times \vec{j}_b(\vec{r},t) \frac{1}{\varepsilon_0} \nabla \rho_b(\vec{r},t)
\]

\[(2) \]

\(\varepsilon_0, \mu_0 \) where \(\varepsilon_0 \) and \(\mu_0 \) respectively, the free space permeability and S is the conductivity of medium under consideration. Here \(\rho_b \) and \(j_b \) are the beam charge and current densities, respectively. We consider a beam of particles of radius a with an axially symmetric transverse charge distribution
\(\sigma(r) \) which move at a constant speed along the axis of a cylindrical beam-pipe of radius \(b \). With a longitudinal beam velocity such that \(v = \beta c z' \) along the \(z \) axis, we have the following beam charge and current densities:

\[
\rho_b(r, z, t) = \sigma(r) \delta(z - \beta c t), \quad (3) \quad j_b(r, t) = \beta c \rho_b(r, t) z'. \quad (4)
\]

Here \(\beta \) is the relativistic factor and \(c \) is the speed of light in vacuum. For a uniformly charged disk of total charge \(Q \):

\[
Q = 2\pi \int_0^a \sigma(r) r dr. \quad (5)
\]

The Fourier time-transformed beam charge and current densities are,

\[
\rho_b(r, z, w) = \frac{\sigma(r)}{\beta c} e^{ik_z z}, \quad (6)
\]

\[
j_b(r, z, w) = \sigma(r) e^{ik_z z}. \quad (7)
\]

For a uniformly charged thin disk of radius charge \(Q \), the surface charge density distribution in the transverse direction is

\[
\sigma(r) = \frac{2Q}{\pi a^2} \left(1 - \frac{r^2}{a^2} \right) e^{ik_z z}. \quad (8)
\]

Where \(k_z \) stands for number in the direction of beam propagation and \(w = k_z \beta \) has been introduced.

For the axial symmetric beam of equations (3) and (4), only transverse magnetic (TM) modes couple to the propagating beam. The non-vanishing electro-magnetic field components are \(E_z \), \(E_r \) and \(B_\theta \). The electromagnetic field components \(E_\theta \) and \(B_r \) vanish identically because of the axial symmetry of the beam. Assuming a normal mode solution for electric \(E_z \) such that \(\vec{E}(r, z, w) = E_z(r, w) e^{ik_z z} \) and by making use of \(\rho(r, z, w) \) and \(j_b(r, z, w) \) in equations (6) and (7), we obtain the following equations the longitudinal electric field component in each region of Fig 1:

\[
\frac{d^2}{dr^2} + \frac{1}{r} \frac{1}{r} \frac{d}{dr} - \frac{k_z^2}{\gamma_c^2} E_z^{(1)}(r, w) = \frac{ik_z c}{\beta \epsilon_0 c \gamma_0^2} \frac{2Q}{\pi a^2} \left(1 - \frac{r^2}{a^2} \right), \quad a \leq r \leq a. \quad (9)
\]

\[
\frac{d^2}{dr^2} + \frac{1}{r} \frac{1}{r} \frac{d}{dr} - \frac{k_z^2}{\gamma_0^2} E_z^{(2)}(r, w) = 0, \quad a \leq r \leq b \quad (10)
\]

\[
\frac{d^2}{dr^2} + \frac{1}{r} \frac{1}{r} \frac{d}{dr} - \frac{k_z^2}{\gamma_c^2} E_z^{(3)}(r, w) = 0, \quad b \leq r \leq h = b + d. \quad (11)
\]
\[
\frac{d^2}{dr^2} + \frac{1}{r} \frac{1}{dr} - \frac{k_z^2}{\gamma_0^2} e_z^{(4)}(r, w) = 0, \quad h \leq r < \infty
\]

(12)

Here \(\gamma_0^{-2} \) has been introduced as follows:

\[
\gamma_0^{-2} = 1 - \beta^2, \quad \frac{1}{\gamma_0^2} = \frac{1}{\gamma_0^2} - \frac{i w \mu_0 S}{k_z^2}
\]

(13)

The azimuthal magnetic field component \(h_\theta (r, z, w) \) needed for matching the solutions at the different interfaces involved in the problem is obtained from Maxwell’s curl equations as follows:

\[
b_\theta = -i \gamma_c^2 \frac{\beta}{k_z} \frac{1}{c} \left(\frac{S}{\varepsilon_0 w} \right) \frac{\partial e_z}{\partial r}
\]

(14)

Where \(\gamma \) in equation (14) stands for \(\gamma_0 \) in vacuum, for \(\gamma_c \) in the beam-pipe wall. The general solution for the \(z \)-component of the electric field is,

\[
e_z(r, w) = \begin{cases}
A_1 I_0(\sigma_0 r) - i \frac{2Q}{
\pi \rho \varepsilon_0 k_z \beta c} \left(1 - \frac{r^2}{a^2} - \frac{4}{\sigma_0^2 a^2} \right) & r \leq a \\
A_1 I_0(\sigma_0 r) + A_3 K_0(\sigma_0 r) & a \leq r \leq b \\
A_1 I_0(\sigma_0 r) + A_3 K_0(\sigma_c r) & b \leq r \leq h \\
A_1 I_0(\sigma_0 r) & h \leq r < \infty
\end{cases}
\]

(15)

Where \(\sigma_0 = \frac{k_z}{\gamma_0} = \frac{w}{\beta c \gamma_0}, \sigma_c = \frac{k_z}{\gamma_c} \), \(I_0 \) and \(K_0 \) are modified Bessel function of first and second kind respectively. The corresponding azimuthal magnetic field is,

\[
b_\theta (r, w) = \begin{cases}
-i \gamma_0^2 \frac{\beta}{k_z} \left[A_1 \sigma_0 I_1(\sigma_0 r) + i \alpha \frac{2}{a} \right] & 0 < r < a \\
-i \gamma_0^2 \frac{\beta}{k_z} \left[A_1 \sigma_0 I_1(\sigma_0 r) - A_3 \sigma_0 K_1(\sigma_0 r) \right] & a < r < b \\
-i \gamma_0^2 \frac{\beta}{k_z} \left(1 + i \frac{S}{\varepsilon_0 w} \right) \left[A_1 \sigma_0 I_1(\sigma_0 r) - A_3 \sigma_c K_1(\sigma_c r) \right] & b < r < h \\
-i \gamma_0^2 \frac{\beta}{k_z} \left[A_1 \sigma_c K_1(\sigma_c r) \right] & h < r < \infty
\end{cases}
\]

(16)

Applying the boundary conditions on the tangential field components \(e_z \) and \(h_\theta \) at all interfaces at \(r = a, r = b, r = h \) we obtain the following closed system of algebraic equations for the integration constants:
\[A_1 I_0(\sigma_0a) + ia \frac{4}{\sigma_0^2 a^2} = A_1 I_0(\sigma_0a) + A_3 K_0(\sigma_0a), \text{ continuity of } E_z \text{ at } r = a \] (17)

\[A_1 I_1(\sigma_0a) + ia \frac{2}{\sigma_0^2 a} = A_2 I_1(\sigma_0a) + A_3 K_1(\sigma_0a), \text{ continuity of } E_z \text{ at } r = a \] (18)

\[A_2 I_0(\sigma_0b) + A_3 K_0(\sigma_0b) = A_1 I_0(\sigma_0b) + A_3 K_0(\sigma_0b), \text{ continuity of } E_z \text{ at } r = b \] (19)

\[\eta \left[A_2 I_0(\sigma_0b) - A_3 K_1(\sigma_0b) = A_1 I_0(\sigma_0b) + A_3 K_1(\sigma_0b) \right], \text{ continuity of } B_\theta \text{ at } r = b \] (20)

\[A_4 I_1(\sigma_0h) + A_3 K_0(\sigma_0h) = \eta_c A_0 K_1(\sigma_0h), \text{ continuity of } B_\theta \text{ at } r = h \] (21)

\[A_4 I_1(\sigma_0h) + A_3 K_0(\sigma_0h) = \eta_c A_0 K_1(\sigma_0h), \text{ continuity of } B_\theta \text{ at } r = h \] (22)

Where the parameters \(\eta_c \) and \(a \) are defined as follows

\[\eta_c = \frac{\gamma_0}{\gamma_c^e(1 + i \mu_0 c^2 S / w)} = \frac{\gamma_0 w}{i \gamma_c (S - i w e_0)}, \quad a = \frac{2Q}{\pi a^2 w e_0} \]

\[A_4 = 2i \alpha I_1(\sigma_1a) \left[\frac{I_0(\sigma_1a) + RK_0(\sigma_1a)}{I_1(\sigma_1a) - RK_1(\sigma_1a)} - \frac{2}{(\sigma_1a)} \left[\frac{K_1(\sigma_1a)}{I_1(\sigma_1a)} - \frac{1}{R} \right] \right], \] (23)

\[A_2 = \frac{I_0(\sigma_0a) - RK_1(\sigma_0a)}{I_1(\sigma_0a) - RK_1(\sigma_0a)} - A_4 = \frac{ia}{2(\sigma_0a)} \] (24)

\[A_3 = RA_2, \] (25)

\[A_4 = \frac{I_0(\sigma_0b) + RK_0(\sigma_0b)}{I_0(\sigma_0b) - FK_0(\sigma_0b)} \] (26)

\[A_5 = RA_4, \] (27)

\[A_6 = \frac{I_0(\sigma_0h)}{K_0(\sigma_0h)} A_4 + \frac{K_0(\sigma_0h)}{K_0(\sigma_0h)} A_3, \] (28)

\[R = \frac{\eta_c I_1(\sigma_0b) - GI_0(\sigma_0b)}{\eta_c K_1(\sigma_0b) - GK_0(\sigma_0b)} \] (29)

\[G = \frac{I_1(\sigma_0b) - FK_1(\sigma_0b)}{I_0(\sigma_0b) + FK_0(\sigma_0b)} \] (30)

\[F = \frac{I_1(\sigma_0h)K_0(\sigma_0h) + \eta_c K_1(\sigma_0h) I_0(\sigma_0h)}{K_1(\sigma_0h)K_0(\sigma_0h) - \eta_c K_1(\sigma_0h)K_0(\sigma_0h)} \] (31)

III. POWER TRANSMISSION COEFFICIENT
We define the beam-pipe transmission coefficient of longitudinal electric field τ_z as the ratio of the longitudinal electric field leaking into the outer vacuum at $r = h$ to the field impinging on the pipe-wall at $r = b$, namely,

$$\tau_z = \frac{E_z(r = h)}{E_z(r = b)} = \frac{I_0(\sigma_e h) + \frac{\lambda_n}{\lambda_i} K_0(\sigma_i h)}{I_0(\sigma_e b) + \frac{\lambda_n}{\lambda_i} K_0(\sigma_i b)}$$

$$= \frac{I_0(\sigma_e h) + FK_0 \frac{\lambda_n}{\lambda_i} (\sigma_i h)}{I_0(\sigma_e b) + FK_0 K_0(\sigma_i b)}$$

Where F is given by the following expression

$$F \approx \frac{1}{\pi} e^{2\sigma_e b} \left[\frac{K_0(\sigma_i h) + \eta_e K_1(\sigma_i h)}{K_0(\sigma_i h) - \eta_e K_1(\sigma_i h)} \right]$$

Introduce u such that:

$$u = \left[\frac{K_0(\sigma_i h) + \eta_e K_1(\sigma_i h)}{K_0(\sigma_i h) - \eta_e K_1(\sigma_i h)} \right]$$

We obtain

$$\tau_z = \sqrt{\frac{b e^{\sigma_e d}}{h} \frac{1 + F \pi e^{-2\sigma_e d}}{1 + F \pi e^{-2\sigma_e d}}} = \sqrt{\frac{b e^{\sigma_e d}}{h}} \frac{1+u}{1+ue^{2\sigma_e d}}$$

$$= \sqrt{\frac{b}{b + d} e^{-2\sigma_e d} + ue^{\sigma_e d}}$$

Substitute for u and rearrange, we get,

$$\tau_z = \sqrt{\frac{b}{h} \frac{K_0(\sigma_i h) - \eta_e(\sigma_i h) + k_0(\sigma_i h) + \eta_e k_1(\sigma_i h)}{h(K_0(\sigma_i h) - \eta_e K_1(\sigma_i h) e^{-\sigma_e d} + (K_0(\sigma_i h) + \eta_e K_1(\sigma_i h)) e^{\sigma_e d}}$$

$$= \sqrt{\frac{b}{h} \frac{2K_0(\sigma_i h) - 2K_0(\sigma_i h) \cosh(\sigma_i h) - \eta_e K_1(\sigma_i h) (e^{-\sigma_e d} - e^{\sigma_e d})}{\cosh(\sigma_i h) - \eta_e K_1(\sigma_i h) \cosh(\sigma_i h) \sinh(\sigma_i h)}}$$

In a similar way, the transmission of the radial electric field (or azimuthal magnetic field) is found to be,

$$\tau_z = \frac{E_r(r = h)}{E_r(r = b)} = \frac{I_0(\sigma_e h) - \frac{\lambda_n}{\lambda_i} K_1(\sigma_i h)}{I_1(\sigma_e b) - \frac{\lambda_n}{\lambda_i} K_1(\sigma_i h)}$$

$$= \sqrt{\frac{b}{h} \frac{1 - u}{e^{-\sigma_e d} - ue^{\sigma_e d}}}$$
\[\tau_z = \frac{b}{h} \frac{K_0(\sigma_0 h) - \eta_e(\sigma_0 h) + k_0(\sigma_0 h) + \eta_e k_1(\sigma_0 h)}{(K_0(\sigma_0 h) - \eta_e k_1(\sigma_0 h))e^{-\sigma_d} + (K_0(\sigma_0 h) + \eta_e k_1(\sigma_0 h))e^{\sigma_d}} \]

\[= \frac{b}{h} \frac{2\eta_e K_1(\sigma_0 h)}{2K_0(\sigma_0 h)\sinh(\sigma_c h)K_0(\sigma_0 h) + \cosh(\sigma_c h)K_1(\sigma_0 h)} \]

(39)

We can now obtain the coefficient of the radial power transmission \(\tau_r \). It is defined as the ratio of time averaged radial power leaving the wall at \(r = h \) to the radial power entering the wall at \(r = b \), namely

\[\tau_r = \frac{S_r^{(p)}(r = h)}{S_r^{(p)}(r = b)} = \frac{E_z(r = h)H_0^*(r = h)}{E_z(r = b)H_0^*(r = b)} = \tau_z \tau_0^* \]

(40)

\[\tau_z = \frac{E_z(r = h)}{E_z(r = b)} \frac{b}{\sqrt{h}} \frac{1}{\cosh(\sigma_c d) - \eta_e \sinh(\sigma_c d)K_1(\sigma_c h)K_1(\sigma_0 h)} \]

(41)

\[\tau_r = \frac{H_\theta(r = h)}{H_\theta(r = b)} \approx \frac{\eta_e K_1(\sigma_0 h)}{K_0(\sigma_0 h)} \]

(42)

Where \(S_r^{(p)} \) the radial component of the time is averaged Poynting’s vector

IV. NUMERICAL EXAMPLE

We obtained analytically the coefficient of the radial power transmission \(\tau_r \). It has been defined as the ratio of time averaged radial power leaving the wall at \(h \) to the radial power entering the wall at \(r = b \), namely,
POWER TRANSMISSION OF A PARTICLE BEAM MOVING ...

\[\tau_p = \frac{S_r^{(p)}(r = h)}{E_z(r = h)H_\theta^*(r = h)} \]

\[\tau_p = \frac{S_r^{(p)}(r = b)}{E_z(r = b)H_\theta^*(r = b)} = \tau_z \tau_0^* \] (43)

\[\tau_r = \frac{H_z(r = h)}{H_z(r = b)} \approx \sqrt{\frac{b}{h \cosh(\sigma_c d) - \eta_c \sinh K_1(\sigma_0 h) / K_1(\sigma_0 h)}} \] (44)

\[\tau_r = \frac{H_\theta(r = h)}{H_\theta(r = b)} \approx \sqrt{\frac{b}{h \eta_c K_1(\sigma_0 h) / K_1(\sigma_0 h)}} \] (45)

Where \(S_r^{(p)} \) is the radial component of the time averaged Poynting’s vector \(S = E \times H \). We summarize our numerical results as follows,

1. Figure 2 show the power transmission at the lowest harmonic number \(n = 1 \) for the beam energies \(b = 0.7, b = 0.9 \) and \(b = 0.99 \). We see that the power transmission becomes an important issue at high energies due to increases in the power transmission with increasing beam energy.

2. The curves of Figure 3 show that the power transmission will decrease by increasing the beam speed \(\beta = 0.99 \).

3. In Figure 4 we see that the radial power transmission is higher for the lower harmonic numbers. Also in accelerator design, one should take care of the lower harmonics.
AHMED M. AL-AL-KHATEEB and NOUF K. AL-SALEEM

V. CONCLUSIONS

Power radial transmission of a particle beam of parabolic (quadratic) transverse charge distribution has been presented in this paper, theoretically and numerically. The beam is moving at constant speed down a resistive cylindrical beam-pipe of finite wall thickness. The coefficient of radial power transmission through the beam-pipe wall have been obtained analytically and then analyzed numerically for different beam energies, different wall conductivities and different wave mode (harmonic) frequencies. The radial transmission of power is a measure of the shielding effectiveness of the pipe wall.

We obtained analytically the coefficient of the radial power transmission τ. It has been defined as the ratio of time averaged radial power leaving the wall at h to the radial power entering the wall at $r = b$, namely,

$$\tau_r = \frac{S_r(r = h)}{S_r(r = b)} = \frac{E_z(r = h)H_0^z(r = h)}{E_z(r = b)H_0^z(r = b)} = \tau_0 \tau_*$$ \hspace{1cm} (46)

$$\tau_r = \frac{H_\phi(r = h)}{H_\phi(r = b)} \approx \frac{1}{\sqrt{h \cosh(\sigma_c d) - \eta_c \sinh K_1(\sigma_0 h)/K_1(\sigma_0 h)/K_0(\sigma_c h)}}$$ \hspace{1cm} (47)

$$\tau_r = \frac{H_\phi(r = h)}{H_\phi(r = b)} \approx \frac{\eta_c K_1(\sigma_0 h)/K_0(\sigma_0 h)}{\sqrt{h \eta_c \cosh(\sigma_c d)K_1(\sigma_0 h)/K_0(\sigma_0 h) - \sinh(\sigma_c d)}}$$ \hspace{1cm} (48)

Where S is the radial component of the time averaged Poynting’s vector $\vec{S} = \frac{1}{2} \vec{E} \times \vec{H}^*$. We now summarize the main results and conclusions of the analytical and numerical calculations as follows:

1. The radial power transmission increases with increasing beam energy (see Fig 2),
2. The radial power transmission decreases with increasing wall conductivity (see Fig 3),
3. The radial power transmission is higher for lower harmonic numbers (see Fig 4),

VI. REFERENCES [1]