In this paper, we establish the Ulam stability of first-order nonlinear dynamic equations on time scales. Moreover, we investigate four types of stability by employing dynamic inequalities and the Picard operator technique. An illustrative example is provided to demonstrate the primary results.
Esmaeil, G. A. M., Zaghrout, A. A. S., & El-Deeb, A. A. (2646). Dynamic Ulam stability behavior for first-order nonlinear equations on time scales. Al-Azhar Bulletin of Science, 2025(1), -. doi: 10.58675/2636-3305.1696
MLA
Gehan A. M. Esmaeil; Afaf A. S. Zaghrout; Ahmed A. El-Deeb. "Dynamic Ulam stability behavior for first-order nonlinear equations on time scales", Al-Azhar Bulletin of Science, 2025, 1, 2646, -. doi: 10.58675/2636-3305.1696
HARVARD
Esmaeil, G. A. M., Zaghrout, A. A. S., El-Deeb, A. A. (2646). 'Dynamic Ulam stability behavior for first-order nonlinear equations on time scales', Al-Azhar Bulletin of Science, 2025(1), pp. -. doi: 10.58675/2636-3305.1696
VANCOUVER
Esmaeil, G. A. M., Zaghrout, A. A. S., El-Deeb, A. A. Dynamic Ulam stability behavior for first-order nonlinear equations on time scales. Al-Azhar Bulletin of Science, 2646; 2025(1): -. doi: 10.58675/2636-3305.1696