In Vitro schistosomicidal activity of five common species of Red Sea Cone snail muscle extracts

Document Type : Original Article

Authors

1 Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt.

2 Parasitology Department, Faculty of medicine, Benha University, Egypt.

Abstract

The potential antischistosomal activity of Conus muscle extract on the adult worms of Schistosoma mansoni was studied In vitro. Live specimens of five common species of cone snails were collected from several locations on the Egyptian Red Sea coast. The muscles of these snails had been collected after crushing their shells to prepare the muscle extracts. The adult worms of S. mansoni were isolated from the blood circulation by perfusion technique using phosphate buffer. After 1- 4 days of exposure to cone snails muscle extracts at varying doses, the worm’s motility and mortality rates were examined. The results showed that muscle extracts of 3 species of cone snails; Conus vexillum, Conus fulgetrum, Conus flavidus, with no significant effect on the survival and motility of S. mansoni worms. In contrast, the muscle extract of Conus textile showed significant effect on the survival and motility of S. mansoni worms and the LD50 was 43.85 μg/ml. However, the muscle extract of Conus lividus showed a weak effect (mortality rate 13%) on the viability and motility of S. mansoni worms at high concentration only (100μg/ml) after 96 hours of incubation. The probable tegumental alterations of worms after exposure to the muscle extracts were investigated using scanning electron microscopy (SEM). C. textile muscle extract could induce tegumental damage in S. mansoni worms, including the loss and damage of surface tubercles, as well as the destruction of oral sucker. It can also cause the development of protuberances and shortening of tegumental spines especially around the gynaecophoric canal. In conclusion, the current study revealed the schistosomicidal effect of C. textile muscle extract and might lead to novel antischistosomal drugs.   

Keywords

Main Subjects


[1]         Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. Lancet. 2006 Sep 23;368(9541):1106–18.
[2]         World Health Organization. Preventive chemotherapy in human helminthiasis : coordinated use of anthelminthic drugs in control interventions : a manual for health professionals and programme managers. 2006;
[3]         El Ridi R, Aboueldahab M, Tallima H, Salah M, Mahana N, Fawzi S, et al. In vitro and in vivo activities of arachidonic acid against Schistosoma mansoni and Schistosoma haematobium. Antimicrob Agents Chemother [Internet]. 2010 Aug 1 [cited 2022 May 2];54(8):3383–9. Available from: https://pubmed.ncbi.nlm.nih.gov/20479203/
[4]         Cowan N, Yaremenko IA, Krylov IB, Terent’ev AO, Keiser J. Elucidation of the in vitro and in vivo activities of bridged 1,2,4-trioxolanes, bridged 1,2,4,5-tetraoxanes, tricyclic monoperoxides, silyl peroxides, and hydroxylamine derivatives against Schistosoma mansoni. Bioorg Med Chem. 2015 Aug 15;23(16):5175–81.
[5]         Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Ibrahim N, Wynn NB, et al. Reduced Susceptibility to Praziquantel among Naturally Occurring Kenyan Isolates of Schistosoma mansoni. PLoS Negl Trop Dis. 2009;3(8).
[6]         Ketema Deribew, Tekeste2 Z, Petros B. Urinary schistosomiasis and malaria associated anemia in Ethiopia. Asian Pac J Trop Biomed. 2013;3(4):307–10.
[7]         Ettinger K, Cohen G, Momic T, Lazarovici P. The Effects of a Chactoid Scorpion Venom and Its Purified Toxins on Rat Blood Pressure and Mast Cells Histamine Release. Toxins (Basel). 2013;1332–42.
[8]         Soares AM. Use of Snake Venom for Biomedical Researches and Drug Development. Open J Biochem Biotechnol. 2012;1(1):1–3.
[9]         Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta [Internet]. 2000 Mar 7 [cited 2021 Aug 13];1477(1–2):146–56. Available from: https://pubmed.ncbi.nlm.nih.gov/10708855/
[10]       Goswami U, Brenes JA, Punjabi G V, Leclaire MM, Williams DN. Associations and Outcomes of Septic Pulmonary Embolism. Open Respir Med J. 2014;28–33.
[11]       Aarti C, Khusro A. Snake venom as Anticancer agent-Current Perspective. 2013;1(6):24–9. Available from: www.ijpab.com
[12]       Abdel-Rahman M, Abdel-Nabi M, El-Naggar M, Abbas A, Strong P. Conus vexillum venom induces oxidative stress in Ehrlich ’ s ascites carcinoma cells : an insight into the mechanism of induction. J Venom Anim Toxins Incl Trop Dis. 2013;19(1):1.
[13]       Calderon LA, Sobrinho JC, Zaqueo KD, Moura AA De, Grabner AN, Mazzi M V, et al. Antitumoral Activity of Snake Venom Proteins : New Trends in Cancer Therapy. Biomed Res Int. 2014;2014.
[14]       Deshane J, Garner C, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem [Internet]. 2003 Feb 7 [cited 2021 Aug 13];278(6):4135–44. Available from: https://pubmed.ncbi.nlm.nih.gov/12454020/
[15]       Sethi S, Ali S, Sethi S, Sarkar F. MicroRNAs in personalized cancer therapy. Clin Genet [Internet]. 2014 [cited 2021 Aug 13];86(1):68–73. Available from: https://pubmed.ncbi.nlm.nih.gov/24635652/
[16]       Zouari-Kessentini R, Srairi-Abid N, Bazaa A, Ayeb M El, Luis J, Marrakchi N. Antitumoral Potential of Tunisian Snake Venoms Secreted Phospholipases A2. Biomed Res Int [Internet]. 2013 [cited 2021 Aug 13];2013:1–9. Available from: /pmc/articles/PMC3581298/
[17]       Gao B, Peng C, Yang J, Yi Y, Zhang J, Shi Q. Cone snails: A big store of conotoxins for novel drug discovery. Vol. 9, Toxins. MDPI AG; 2017.
[18]       Periyasamy N, Srinivasan M, Balakrishnan S. Antimicrobial activities of the tissue extracts of Babylonia spirata Linnaeus , 1758 ( Mollusca : Gastropoda ) from Thazhanguda , southeast coast of India. 2012;2(1):36–40.
[19]       Eraky MA, Aly NSM, Selem RF, El-Kholy AAEM, Rashed GAER. In vitro schistosomicidal activity of phytol and tegumental alterations induced in juvenile and adult stages of Schistosoma haematobium. Korean J Parasitol. 2016;54(4):477–84.
[20]       Duvall R, DeWitt W. An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am J Trop Med Hyg [Internet]. 1967 [cited 2021 Aug 19];16(4):483–6. Available from: https://pubmed.ncbi.nlm.nih.gov/4952149/
[21]       Xiao SH, Keiser J, Chollet J, Utzinger J, Dong Y, Endriss Y, et al. In vitro and in vivo activities of synthetic trioxolanes against major human schistosome species. Antimicrob Agents Chemother [Internet]. 2007 Apr [cited 2022 May 16];51(4):1440–5. Available from: https://pubmed.ncbi.nlm.nih.gov/17283188/
[22]       Hassan EA, Abdel-Rahman MA, Ibrahim MM, Soliman MFM. In vitro antischistosomal activity of venom from the Egyptian snake Cerastes cerastes. Rev Soc Bras Med Trop. 2016 Nov 1;49(6):752–7.
[23]       Colley D, Secor W. Immunology of human schistosomiasis. Parasite Immunol [Internet]. 2014 Aug 1 [cited 2021 Aug 18];36(8):347–57. Available from: https://pubmed.ncbi.nlm.nih.gov/25142505/
[24]       Gönnert R, Andrews P. Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkd. 1977 Jan;52(2):129–50.
[25]       Caffrey C. Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol [Internet]. 2007 Aug [cited 2021 Aug 18];11(4):433–9. Available from: https://pubmed.ncbi.nlm.nih.gov/17652008/
[26]       Alonso D, Muñoz J, Gascón J, Valls ME, Corachan M. SHORT REPORT: FAILURE OF STANDARD TREATMENT WITH PRAZIQUANTEL IN TWO RETURNED TRAVELERS WITH SCHISTOSOMA HAEMATOBIUM INFECTION. Am Soc Trop Med Hyg. 2006;74(2):342–4.
[27]       Josué DM. Natural products with antischistosomal activity. Futur Sci. 2015;7(6):801–20.
[28]       Carté BK. Biomedical Potential of Marine Natural ProductsMarine organisms are yielding novel molecules for use in basic research and medical applications. Bioscience [Internet]. 1996 Apr 1 [cited 2021 Nov 4];46(4):271–86. Available from: https://academic.oup.com/bioscience/article/46/4/271/225249
[29]       Periyasamy N, Arularasan S, Gayathri S. Antibacterial activity of the tissue extracts of Conus betulinus and Conus inscriptus Linnaeus, 1758 (Mollusca: Gastropoda) from Nagapattinam, Southeast coast of India. Asian Pacific J Trop Dis. 2012;2(SUPPL2):1–6.
[30]       Suresh M, Arularasan S, Sri Kumaran N. SCREENING ON ANTIMICROBIAL ACTIVITY OF MARINE GASTROPODS BABYLONIA ZEYLANICA (BRUGUIÈRE, 1789) AND HARPA CONOIDALIS (LAMARCK, 1822) FROM MUDASALODAI, SOUTHEAST COAST OF INDIA. 2012.
[31]       Fouda MMA, Abdel-Wahab M, Mohammadien A, Germoush MO, Sarhan M. Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications. J Venom Anim Toxins Incl Trop Dis [Internet]. 2021 Oct 18 [cited 2022 Jul 14];27. Available from: http://www.scielo.br/j/jvatitd/a/9KhLrFJXVFwfsQ8yznZfx3N/?lang=en
[32]       Gugulothu R, Guguloth B, Rathlavath S, Kummari S. DIVERSITY OF CONUS SPECIES AND IMPORTANCE OF CONOTOXINS. Int J Sci Nat. 2017;9(1):162–7.
[33]       Nascimento C, Miura LMC V, Nakano E, Kawano T, Sa U De, Ministro C, et al. Evaluation of the in vitro Activity of Dermaseptin 01 , a Cationic Antimicrobial Peptide , against Schistosoma mansoni. Chem Biodivers. 2011;8:548–58.
[34]       Pereira AC, e Silva MLA e., Souza JM, de Laurentiz RS, Rodrigues V, Januário AH, et al. In vitro and in vivo anthelmintic activity of (−)-6,6′-dinitrohinokinin against schistosomula and juvenile and adult worms of Schistosoma mansoni. Acta Trop. 2015 Sep 1;149:195–201.
[35]       Xiao S, Shen B, Utzinger J, JM CT. Ultrastructural alterations in adult Schistosoma mansoni caused by artemether. Mem Inst Oswaldo Cruz [Internet]. 2002 [cited 2021 Aug 19];97(5):717–24. Available from: https://pubmed.ncbi.nlm.nih.gov/12219141/
[36]       Oliveira R de, Rehder V, AS S, ÍM O, JúniorJE, De C, et al. Schistosoma mansoni: in vitro schistosomicidal activity of essential oil of Baccharis trimera (less) DC. Exp Parasitol. 2012;132:135–43.
[37]       Oliveira R de, Rehder V, Oliveira AS, De LJ V, Linhares A, Allegretti S. Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp Parasitol. 2014;139:63–72.
[38]       Veras L, Guimaraẽs M, Campelo Y, Vieira M, Nascimento C, Lima D, et al. Activity of epiisopiloturine against Schistosoma mansoni. Curr Med Chem. 2012;19:2051–8.
[39]       Shuhua X, Hotez P, Tanner M. Artemether, an effective new agent for chemoprophylaxis against shistosomiasis in China: its in vivo effect on the biochemical metabolism of the Asian schistosome. Southeast Asian J Trop Med Public Heal. 2000;31(4):724–56.
[40]       Cai R, She X, Wang Y, Gong W, Zhang H, Xia C. In vitro effect of photoactivated hypericin on anti-Schistosoma japonicum adult male worms. Biotechnol Adv. 2014;32:176–9.
[41]       Lima C, Freitas F, Morais L, Cavalcanti M, Silva L, Padilha R, et al. Ultrastructural study on the morphological changes to male worms of Schistosoma mansoni after in vitro exposure to allicin. Rev Soc Bras Med Trop [Internet]. 2011 May [cited 2021 Aug 19];44(3):327–30. Available from: https://pubmed.ncbi.nlm.nih.gov/21537796/
[42]       Silva M, Oliveira G, de Carvalho R, de Sousa D, Freitas R, Pinto P. Antischistosomal activity of the terpene nerolidol. Molecules. 2014;19:3793–803.
[43]       Santiago E de F, Oliveira SA de, Filho GB de O, Moreira DRM, Gomes PAT, Silva AL da, et al. Evaluation of the Anti-Schistosoma mansoni Activity of Thiosemicarbazones and Thiazoles. Antimicrob Agents Chemother [Internet]. 2014 Jan [cited 2021 Aug 19];58(1):352. Available from: /pmc/articles/PMC3910798/
[44]       Aires AL, Ximenes E, Silva R, Barbosa V, Góes A, Peixoto C, et al. Ultrastructural analysis of β-lapachone-induced surface membrane damage in male adult Schistosoma mansoni BH strain worms. Exp Parasitol [Internet]. 2014 [cited 2021 Aug 19];142(1):83–90. Available from: https://pubmed.ncbi.nlm.nih.gov/24768955/
[45]       Xiao S, Qiao C, Xue J, Wang L. Mefloquine in combination with hemin causes severe damage to adult Schistosoma japonicum in vitro. Acta Trop [Internet]. 2014 Mar [cited 2021 Aug 19];131(1):71–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24361723/
[46]       Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317–23.
[47]       Brown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24–30.
[48]       Huey WH. Action of Antimicrobial Peptides: Two-State Modelt. ACS Publ. 2000;39(29):8347–8352.