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Abstract 

This sort of research might be used to improve the design of micro-pumps and micro heat exchangers. Understanding 

the fluid flow and heat transfer properties of the buoyancy-induced micro pump and micro heat exchangers in microfluidic 

and thermal systems is extremely important. In three cases of asymmetric distributions of walls temperature of a vertical micro- 

porous–channel, the effect of viscous dissipation and heat generation on radiative steady MHD fully developed natural 

convection flow was investigated analytically using Differential Transform Method (DTM) and numerically using Finite 

Difference Method (FDM). The velocity slip and temperature jump circumstances are both taken into account since they have 

opposing impacts on the volume flow rate and the heat transfer rate, respectively. Graphs and tables show the effect of each 

governing parameter on non-dimensional velocity, temperature, local wall shear stress, and local surface heat flux at the 

microchannel surfaces. The results obtained were validated by comparison with their peers previously published. 

Keywords: Asymmetric wall temperature; Fluid-wall interaction; Micro- porous–channel; Analytical and numerical solution.  

1. Introduction 

Microchannels have endless uses in life applications. As a result, microfluidics has sparked a lot of scientific 

interest in recent years. In micro-reactor devices, micro-channel is frequently used for integrated cooling or 

heating. Therefore, it is one of the main components in MEMS (Micro-electro-mechanical systems), NEMS 

(Nano-electromechanical systems) and biomedical applications such as drug delivery and DNA sequencing [1]. 

Micro-channel heatsinks, micro jet impingement cooling, and micro heat pipes are some of the current 

applications for such devices [3]. Knudsen number 𝐾𝑛 is a crucial variable in micro-channel analysis and it’s also 

characterizing the effect of rarefaction , It has been defined as the ratio of molecular mean free path 𝜆 to 

characteristic length 𝑎 [2-3]. For continuous flows, the Knudsen number is relatively low, where the value of 𝐾𝑛 ∈  

(10−2 10−1) a phenomenon known as "slip flow" [2]. Categorization of distinct flow regimes based on 𝐾𝑛 

studied by [4]. [5,6] looked into the temperature jump situation and discovered that fluid wall contact has a 

significant role.  

The fully developed natural convection in open-ended vertical parallel plate microchannel with asymmetric 

wall temperature distribution in which the effect of rarefaction and fluid wall interaction studied by [2] and [7-9]. 

This result is improved by [10] by accounting for suction/injection on the microchannel walls. They came to the 

conclusion that skin friction and heat transfer rate are both highly influenced by the suction/injection parameter. 

[11] and [12] looked at the temperature jump condition in another work and discovered that the fluid–wall contact 

had a significant impact. The same problem was studied by [7] after adding the effect of heat generation to come 

after him [8] to study the effect of radiation on the same issue. Also, the impact of laser radiation and chemical 

reaction with electromagnetic field and electroosmotic flow of hybrid non-Newtonian fluid via a sinusoidal 

channel is investigated [20]. 

In recent past, [13] conducted a theoretical analysis of fully developed mixed convective heat transfer of 

water/alumina nanofluid within a vertical microchannel, using the modified Buongiorno's model. For mixed 
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convection, [14] investigated the first-order fully developed mixed convection in a vertical planar microchannel 

with asymmetric wall temperatures analytically. [14] went on to expand their research to include is flux walls and 

an annular cross-section produced by two concentric micro tubes. [15] investigated fully developed slip flow 

mixed convection in vertical micro ducts of two distinct cross-sections, namely polygon, and rectangle, using the 

circle as a limiting example. Newly, In the presence of viscous dissipation, [16] conducted a theoretical 

examination of fully developed mixed convection flow in an open-ended vertical parallel plate microchannel. The 

flow and heat transfer of a squeezed particle fluid with thermal radiation effects between parallel plates studied 

[19]. Also, [17-18] studied the mathematical modelling and exact solution of steady fully developed mixed 

convection flow in a vertical micro-porous-annulus. 

Due to the rapid growth of novel techniques applied in micro-electro-mechanical systems, manufacturing, 

material processing operations, space systems, and biomedical applications such as drug delivery, DNA 

sequencing, and bio-micro-electro-mechanical systems, micro-channel fluid mechanics has attracted significant 

research interest in recent years. Based on the foregoing, the aim of this study is present a new investigation of 

asymmetric distributions of walls temperature of a vertical micro- porous–channel with effect of viscous 

dissipation and heat generation on radiative steady MHD fully developed natural convection flow in different 

three cases of wall ambient temperature ratio analytically using (DTM) and numerically using (FDM). The present 

work extends the work of [2] and [7,8]. 

2. Formulation of the Problem 

A fully developed natural convection flow of viscous incompressible and electrically conducting fluid in a 

vertical parallel plate micro-porous–channel in the presence of viscous dissipation is considered as shown in Fig.1. 

The distance between two parallel plates is 𝑎 and temperatures of the hotter and cooler plates are 𝑇1 and 𝑇2 where  

𝑇1 >  𝑇2. The gravitational acceleration g in the same direction of 𝑥 – axis and orthogonal to 𝑦 - axis and 𝐵0 is 

normally a uniform magnetic field acting on parallel plates. The parameters of thermal radiation and heat 

generation are taken into account. Fluid is injected into the flow zone through the cold porous plate, and fluid is 

sucked out of the micro-porous–channel at the same rate through the hot porous plate to conserve the mass of the 

fluid in the micro-porous–channel. The fluid's physical characteristics are believed to be constant. Using 

Boussinesq's approximation, the dimensional governing equations of the continuity, momentum and energy can 

be written as follows [8,9]: 

 

Fig.1. Geometry of the problem. 

Continuity equation: 

𝑑𝑣

𝑑𝑦
= 0                                                                                                                                                 (1) 

Momentum equation: 

𝜈
𝑑2𝑢

𝑑𝑦2 −
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𝜌
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Energy equation: 

𝛼
𝑑2𝑇
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𝜌𝒸𝑃
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]
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𝜌𝒸𝑝

𝜕𝑞𝑟

𝜕𝑦
= 0                                                                                   (3) 
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Where 𝑢 – horizontally fluid velocity, 𝑣 -vertically fluid velocity, g - gravitational acceleration, 𝑇1-  temperature 

of hot plate, 𝑇2- temperature of cold plate , 𝐵0 - uniform magnetic field,  - fluid density,  - the kinematic 

viscosity,  - fluid electrical conductivity, 
𝑇
-thermal expansion coefficient, 𝑇- temperature of fluid, 𝑇0-reference 

temperature, 𝐾1-permeability parameter,  - thermal diffusivity, 𝑄0 - heat generation parameter, 𝑐𝑝 - specific heat 

at constant pressure and 𝑞𝑟 - radiative flux vector , respectively. 

The relevant u and T boundary conditions are as follows: 

{
𝑢 =

𝜆(2−𝐹𝜈)

𝐹𝜈

𝑑𝑢

𝑑𝑦
  𝑇 = 𝑇2 +

2𝛾𝜆(2−𝐹𝑡)

𝑃𝑟𝐹𝑡(𝛾+1)

𝑑𝑇

𝑑𝑦
 𝑎𝑡 𝑦 = 0

𝑢 = −
𝜆(2−𝐹𝜈)

𝐹𝜈

𝑑𝑢

𝑑𝑦
  𝑇 = 𝑇1 −

2𝛾𝜆(2−𝐹𝑡)

𝑃𝑟𝐹𝑡(𝛾+1)

𝑑𝑇

𝑑𝑦
 𝑎𝑡 𝑦 = 1

                                                                         (4) 

Where 𝜆 -molecular mean free path, 𝐹𝑣-tangential momentum accommodation coefficient, 𝛾 =
𝒸𝑝

𝒸𝜈
 a ratio of 

specific heats  where  𝒸𝜈-specific heat at constant volume, 𝐹𝑡-tangential thermal accommodation coefficient and  

𝑃𝑟-Prandtl number. 

For an optically thick fluid, the radiative flow vector may be expressed as [15]. 

𝑞𝑟 = - 
4 𝜎∗

 3 𝑘∗  
𝜕𝑇4

𝜕𝑥
 ,                                                                                                                                  (5) 

If the difference between T- fluid temperature and 𝑇0- free stream temperature is very little, 𝑇4 may be represented 

as a Taylor series about 𝑇0, and if the second and higher-order components in the series are ignored, we get: 

𝑇4 ≅ 4 𝑇∞
3  𝑇 − 3 𝑇∞

4                                                                                                                           (6) 

When applying Eqs.(5-6) in Eq.(3), then: 

𝛼 [1 +
16 𝜎∗𝑇0

3

3 𝑎∗𝑘𝑇
]

𝑑2𝑇

𝑑𝑦2 +
𝒬0

𝜌𝒸𝑃
(𝑇 − 𝑇0) +

𝜈

𝒸𝑃
[

𝑑𝑢

𝑑𝑦
]

2

= 0                                                                             (7)   

The following non-dimensional variables are introduced as: 

𝜂 =
𝑦

𝑎
 , 𝜃 =

𝑇− 𝑇0

𝑇1− 𝑇0
 , 𝑓 =

𝜈𝑢

𝑔 𝛽𝑇𝑎2(𝑇−𝑇0)
, 𝑃𝑟 =  

𝜈

𝛼
, 𝜉 =

𝑇2− 𝑇0

𝑇1− 𝑇0
 , 𝛽𝜈 =

(2−𝐹𝜈)

𝐹𝜈
, 𝛽𝑡 =

2𝛾𝜆(2−𝐹𝑡)

𝑃𝑟𝐹𝑡(𝛾+1)
, 𝑘𝑛 =

𝜆

𝑎
 and 𝑙𝑛 =

𝛽𝑡

𝛽𝜈
. 

The non-dimensional form of Eqs. (2) and (7) as below: 

𝑑2𝑓

𝑑𝜂2 − [𝑀 +
1

𝐾
] 𝑓 + 𝜃 = 0                                                                                                                   (8) 

[1 +
4

3𝑅𝑑
]

𝑑2𝜃

𝑑𝜂2 + 𝐸𝑐 [
𝑑𝑓

𝑑𝜂
]

2

+ 𝐻𝜃 = 0                                                                                                    (9) 

Where 𝑀 =
𝜎𝐵0

2𝑎2

𝜌𝜈
 - magnetic parameter, 𝐾 =

𝐾1

𝑎2  -  permeability parameter, 𝑅𝑑 =
𝑎∗𝑘𝑇

4 𝜎∗𝑇0
3 - radiation parameter, 

𝐻 =
𝒬0𝑎2

𝑘𝑇
 - heat generation parameter and 𝐸𝑐 =

𝜌𝑔2𝛽𝑇
2𝑎4(𝑇−𝑇0)

𝜈𝑘𝑇
 - Eckert number. 

In non-dimensional form, the relevant boundary conditions are expressed as: 

{
𝑓 = 𝛽𝜈𝑘𝑛

𝑑𝑓

𝑑𝜂
 

𝜃 = 𝜉 + 𝛽𝜈  𝑘𝑛 𝑙𝑛
𝑑𝜃

𝑑𝜂

         𝑎𝑡  𝜂 = 0,                                                                                                 (10) 

{
𝑓 = −𝛽𝜈𝑘𝑛

𝑑𝑓

𝑑𝜂
 

 𝜃 = 1 − 𝛽𝜈  𝑘𝑛 𝑙𝑛
𝑑𝜃

𝑑𝜂
 
       𝑎𝑡  𝜂 = 1.                                                                                                 (11) 

Where 𝜉- Wall ambient temperature, 𝑘𝑛 - Knudsen Number,  𝑙𝑛 - Fluid wall interaction parameter. 

It's now time to compute the physical values that matter most to us, namely the local wall shear stress or skin 

friction coefficient and the local surface heat flow. Since the shear stress 𝜏𝑤 and the heat flux 𝑞𝑤 are defined as: 
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𝜏𝑤 = 𝜈 [
𝑑𝑢

𝑑𝑦
]                                                                                                                                          (12) 

𝑞𝑤 = −𝛼 [
𝑑𝑇

𝑑𝑦
]                                                                                                                                       (13)                                                   

In the non-dimensional form, 𝐶𝑓  and Nu are defined as: 

𝐶𝑓 =
𝜏𝑤

𝑔 𝛽𝑇𝑎(𝑇−𝑇0)
                                                                                                                                   (14) 

𝑁𝑢 = [1 +
4

3𝑅𝑑
]

𝑎 𝑞𝑤

𝛼(𝑇−𝑇0)
                                                                                                                       (15) 

After applying non-dimensional variables (10-13) Eqs. (14-15) take the form:  

𝐶𝑓 = [
𝑑𝑓

𝑑𝑦
]                                                                                                                                            (16) 

𝑁𝑢 = − [1 +
4

3𝑅𝑑
] [

𝑑𝜃

𝑑𝑦
]                                                                                                                        (17) 

3. Analytical solution 

When the (DTM) is used for solving differential equations with the boundary conditions at infinity or 

problems that have highly nonlinear behavior, the outcomes were diverse solutions. Furthermore, power series 

are ineffective when the independent variable has large values. To address this problem, the (MDTM) has been 

created for the analytical solution of differential equations, and it is discussed in this section. For this, the following 

nonlinear initial value problem is considered. 

By Appling differential transformation theorems on equations (8-9), can be obtained the following recursive 

relations: 

(k + 1)(k + 2)F(k + 2) − [𝑀 +
1

𝐾
] F(k) + Θ(k) = 0,                                                                      (18) 

[1 +
4

3𝑅𝑑
] (k + 1)(k + 2)Θ(k + 2) + 𝐸𝑐 ∑ (𝑟 + 1)(k − r + 1)F(𝑟 + 1)𝑘

𝑟=0 F(k − 𝑟 + 1) + HΘ(k) = 0. (19)     

Where F (k) and Θ(k) are the differential transforms of u(η) and θ(η).  

We can consider 𝑓 `(0)  = 𝜀  and  θ `(0) =  𝜔.                                                                                  (20) 

Then differential transform for boundary condition (10) and consideration (20) are as follows: 

{
F(0) =  𝛽𝜈𝑘𝑛 (k + 1)F(k + 1)

Θ(0) = 𝜉 + 𝛽𝜈𝑘𝑛 𝑙𝑛(k + 1)Θ(k + 1)
,                                                                                              (21) 

{
F(1) =  𝜀

Θ(1) = 𝜔
.                                                                                                                                          (22) 

Moreover, by substituting equations (21-22) into equations (18-19) and by recursive method and boundary 

condition (11) we calculate other values of F(k) and Θ(K). 

4. Numerical solution 

The coupled system of non-linear ordinary differential equations (8-9) with boundary conditions (10-11) are 

solved for the flow velocity and temperature using (FDM) with (ParametricNDSolve using Mathematica 12.3). A 

quasi-linearization technique is applied to replace the non-linear terms. An iterative scheme is used to solve the 

quasi-linearized system of difference equations. 

𝑑2𝑓

𝑑𝜂2 − [𝑀 +
1

𝐾
] 𝑓 + 𝜃 = 0                                                                                                                    (23) 

[1 +
4

3𝑅𝑑
]

𝑑2𝜃

𝑑𝜂2 + 𝐸𝑐 [
𝑑�̂�

𝑑𝜂
] [

𝑑𝑓

𝑑𝜂
] + 𝐻𝜃 = 0.                                                                                              (24) 

Where hat notation denotes the iterated terms that convert equation (24) to a linearized one. The domain of answer 

(0 < 𝜂 < 1) is divided into m subintervals. The linearized system of coupled non-linear ordinary differential 
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equations (23-24) is transformed to system algebraic equations using Taylor’s expansions of the dependent 

variables about central point as: 

𝑑𝑓𝑖

𝑑𝜂
 = 

𝑓𝑖+1−𝑓𝑖−1

∆
 + o(∆2)                                                                                                                          (25) 

𝑑2𝑓𝑖

𝑑𝜂2  = 
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

∆2  + o(∆2)                                                                                                                  (26) 

𝑑2𝜃𝑖

𝑑𝜂2  = 
𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

∆2  + o(∆2)                                                                                                                 (27) 

Where 𝑖 = 1, 2, 3, …… , 𝑚 +  1 and  𝑚 the number of subintervals of the finite domain of solution (0 <  𝜂 < 1). 

5. Results and discussion 

The current parametric investigation was carried out within acceptable limits  0 ≤ 𝛽𝜈𝑘𝑛 ≤ 0.1 and 0 ≤ 𝑙𝑛 ≤

10 and in the continuum and slip flow regimes (𝑘𝑛 ≤ 0.1). Study on the slip-flow in three different cases 

(𝜉 = −0.5¸ 𝜉 = 0 𝑎𝑛𝑑  𝜉 = 0.5 ) of asymmetric distributions of plates temperature (at 𝜂 =0 the cold plate and at 

𝜂 =1 the hot plate ) of a vertical micro- porous–channel has been made. The graphs of micro-channel slip velocity 

𝑓 under the effect of various parameters are shown in Figures (2-8). and through it, we made sure that: 

▪ Figure (2) exhibits the action of  𝑀 on  𝑓 for different values of 𝜉. It is clear that, 𝑓 decreases with an 

increase in the magnetic parameter 𝑀 because the Lorentz force associated with the applied magnetic 

field opposes fluid flow in the transverse direction.  

▪ Figures (3-6) show the micro-channel slip velocity 𝑓 for several values of 𝐻, 𝑘𝑛, 𝐾, and 𝑅𝑑 under the 

effect of 𝜉. It is clear that the fluid velocity 𝑓 increases with an increase in any parameter of the four 

parameters but the increase in 𝐻  and 𝑘𝑛 leads to a large slip velocity jump and the rise in 𝐾 and 𝑅𝑑 leads 

to a small slip velocity jump. 

▪ Figure (7) demonstrate the impact of 𝐸𝑐 and 𝜉 on 𝑓. It is observed that, With a rise in the 𝐸𝑐, f achieve 

their stable state and 𝑓 increases on increasing 𝜉.  

▪ Figure (8) depicts action of 𝑙𝑛 on 𝑓. It is evident that, with an increase in 𝑙𝑛, there is an increase in 𝑓 at 

𝜂 =0 and a decrease in 𝑓 at 𝜂 =1 in the two cases of 𝜉 = −0.5 and 𝜉 = 0. whereas there is an enhancement 

in 𝑓 throughout the micro-channel on increasing 𝑙𝑛 in the case of  𝜉 = 0.5. 

▪ Figures (9-10) displays the influence of 𝐻 and 𝑅𝑑 on 𝜃  for three distinct values of 𝜉. It is noticed that, 𝜃 

increases with an increase in 𝐻 and 𝑅𝑑 but It should be observed that the increase in 𝐻  leads to  jump  

on the fluid temperature 𝜃  more than jump  on the fluid temperature 𝜃 by the increase in 𝑅𝑑   and it’s 

clear in the case 𝜉 = 0.5.  

▪ Figure (11) presents the influence of 𝐸𝐶  with effect of  𝜉 on 𝜃. It has been noted that, 𝜃 attain their steady 

state with an increase in 𝐸𝑐 and there is an enhancement in 𝜃 with an increase in 𝜉. 

▪ Figure (12) displays the action of 𝑙𝑛 on 𝜃 under several cases of 𝜉. It is observed that there is an 

enhancement in 𝜃 at 𝜂 =0 and a reduction in 𝜃 at 𝜂 =1 on increasing 𝑙𝑛 in presence of  𝜉. It should be 

noted that the present results agree with [1] results. 

▪ Figure (13) displays the impact of 𝑘𝑛 on  𝜃 under three distinct cases of 𝜉. It is observed that there is an 

enhancement in the fluid temperature 𝜃 at 𝜂 =0 and a reduction in 𝜃 at 𝜂 =1  on increasing 𝑘𝑛 in the two 

cases of  𝜉 = −0.5 and 𝜉 = 0. But in the third case 𝜉 = 0.5  𝜃 increases throughout the microchannel 

with an increase in 𝑘𝑛. It should be noted that the present results agree with [2] results. 
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In addition, tables (1-2): Comparison between solution by (DTM) and (FDM) for 𝑓(𝜂) and  𝜃(𝜂)  in three 

different cases of 𝜉 when 𝑀 = 1, 𝐾 = 1, 𝑅𝑑 = 1, 𝐸𝑐 = 0.01, 𝐻 = 1, 𝛽 = 1, 𝑘𝑛 = 0.05, 𝜁 = −0.5 𝑎𝑛𝑑 𝑙𝑛 = 1.667 

and  equations for 𝑓(𝜂)  and θ (η) distributions will be generated by algebraic computations: 
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Table 1:  Comparison between solution by (DTM) and (FDM) for 𝑓(𝜂). 

                                                                  𝑓(𝜂)    

𝜂 𝜉= - 0.5 𝜉= 0 𝜉= 0.5 

 𝐷𝑇𝑀 𝐹𝐷𝑀 𝐷𝑇𝑀 𝐹𝐷𝑀 𝐷𝑇𝑀 𝐹𝐷𝑀 

0 0.0007427 0.0007426 0.0077576 0.0077573 0.0147726 0.0147719 

0.1 0.0039830 0.0039819 0.0228510 0.0228422 0.0417191 0.0417034 

0.2 0.0099111 0.0099091 0.0366718 0.0366563 0.0634328 0.0634068 

0.3 0.0173228 0.0173203 0.0485616 0.0485424 0.0798007 0.0797713 

0.4 0.0250384 0.0250355 0.0578347 0.0578150 0.0906314 0.0906053 

0.5 0.0318841 0.0318812 0.0637684 0.0637509 0.0956531 0.0956349 

0.6 0.0366751 0.0366724 0.0655925 0.0655789 0.0945103 0.0945017 

0.7 0.0381965 0.0381943 0.0624774 0.0624683 0.0867586 0.0867583 

0.8 0.0351853 0.0351837 0.0535212 0.0535163 0.0718575 0.0718618 

0.9 0.0263104 0.0263094 0.0377359 0.0377337 0.0491615 0.0491653 

1 0.0101514 0.0101508 0.0140299 0.0140295 0.0179086 0.0179080 

Equations for 𝑓(𝜂)  and θ (η) distributions by (DTM): 

• 𝜉= - 0.5 

𝑓(𝜂) =  0.00074272  + 0.01485447 η + 0.19646266 η2 − 0.212125327 η3 + 0.025753818 η4 −
0.016560469 η5 + 0.00181839 η6 − 0.00083859 η7 + 0.000065399 η8 − 0.000023274 η9 +
0.0000015569 η10.   

• 𝜉= 0 

𝑓(𝜂) = 0.007757604  + 0.15515209 η − 0.031576259 η2 − 0.105586632 η3 −
0.0038536304 η4 − 0.0071885631 η5 − 0.000278161 η6 − 0.000376521 η7 −
0.0000095392 η8 − 0.000010235 η9 − 1.948153027 × 10−7η10. 

• 𝜉= 0.5 

𝑓(𝜂) =  0.0147725556  + 0.295451113 η − 0.2596159786 η2 + 0.0009490742 η3 −
0.033454151518 η4 + 0.00217397752 η5 − 0.00236726402 η6 + 0.000081889 η7 −
0.0000831258666 η8 + 0.000002374499 η9 − 0.0000018258898 η10.    

Equations for 𝑓(𝜂) distributions by (FDM): 

• 𝜉= - 0.5 

𝑓 (𝜂)= 0.0027557 η10- 0.013503 η9+ 0.027199 η8- 0.029382 η7+ 0.017957 η6- 0.020646 η5+ 

0.025545  

η4- 0.21177 η3+  0.19641 η2+ 0.014846 η + 0.0007426. 

• 𝜉= 0 

𝑓 (𝜂) = 0.0082672 𝜂10- 0.040234 𝜂9+ 0.083829 𝜂8-  0.098049 𝜂7+ 0.069253 𝜂6- 0.038015 𝜂5+ 

0.0041106 𝜂4- 0.10647 𝜂3 - 0.031478𝜂2+ 0.15506 𝜂 + 0.0077573. 

• 𝜉= 0.5 

𝑓(𝜂) = 0.0085428 𝜂10- 0.044505 𝜂9+ 0.10086 𝜂8- 0.1302 𝜂7+ 0.10242 𝜂6- 0.051201 𝜂5 - 0.017459 𝜂4- 

0.0013377 𝜂3- 0.25926 𝜂2+ 0.29528 𝜂  + 0.014772. 

Table 2: Comparison between solution by (DTM) and (FDM) for θ(η). 

 θ(η) 

𝜂 𝜉= - 0.5 𝜉= 0 𝜉= 0.5 

 𝐷𝑇𝑀 𝐹𝐷𝑀 𝐷𝑇𝑀 𝐹𝐷𝑀 𝐷𝑇𝑀 𝐹𝐷𝑀 

0 -0.391439 -0.391441 0.078667 0.078662 0.548777 0.548765 

0.1 -0.260448 -0.260465 0.172814 0.172596 0.606079 0.605537 

0.2 -0.128341 -0.128369 0.266218 0.265887 0.660782 0.660023 

0.3 0.004315 0.004280 0.358482 0.358124 0.712652 0.711922 

0.4 0.136954 0.136917 0.449209 0.448897 0.761468 0.760944 

0.5 0.269005 0.268972 0.538012 0.537798 0.807022 0.806806 

0.6 0.399904 0.399878 0.624509 0.624422 0.849118 0.849237 

0.7 0.529089 0.529072 0.708331 0.708367 0.887576 0.887974 

0.8 0.656008 0.656000 0.789118 0.789237 0.922231 0.922764 

0.9 0.780115 0.780114 0.866524 0.866644 0.952934 0.953363 

1 0.900880 0.900878 0.940215 0.940208 0.979551 0.979538 
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Equations for θ (η) distributions by (DTM): 

• 𝜉= - 0.5 

𝜃 (𝜂) = −0.39143988 + 1.30246092 η + 0.08387950 η2 − 0.09304126 η3 − 0.00304408 η4 +

0.00210024 η5 − 0.00002558 η6 − 0.00000144 η7 − 0.00000932 η8 + 0.00000212 η9 −

7.64184582 × 10−7 η10. 

• 𝜉= 0 

𝜃 (𝜂) = 0.07866772  + 0.94382398 η − 0.01690895 η2 − 0.067402001 η3 + 0.00063757 η4 +

0.00143678 η5 − 0.00002212 η6 − 0.00001606 η7 − 0.00000154 η8 − 5.16567013 × 10−8η9 −

1.35220286 × 10−7η10. 

• 𝜉= 0.5 

𝜃 (𝜂) = 0.54877706  + 0.58520778 η − 0.11778213 η2 − 0.041581402 η3 + 0.00410961 η4 +

0.000908607 η5 − 0.00007947 η6 − 0.00000718 η7 − 0.00000192 η8 + 2.79571489 × 10−7η9 −

2.111342308 × 10−7η10. 

Equations for θ (η) distributions by (FDM): 

• 𝜉= - 0.5 

θ (η) = 0.29762 η10- 1.4936 η9+ 3.2267 η8- 3.9279 η7+ 2.9592 η6- 1.4219 η5+ 0.43107 η4- 0.1727 

η3+ 0.09189 η2+ 1.302 η - 0.39144. 

• 𝜉= 0 

𝜃 (𝜂) = 0.066138 η10- 0.33344 η9+ 0.71677 η8- 0.85731 η7+ 0.62507 η6- 0.28549 η5+ 0.081402 η4- 

0.082397 η3- 0.010327 η2+ 0.94114 η + 0.078662. 

• 𝜉= 0.5. 

𝜃 (𝜂) = 0.26455 η10-  1.3476 η9+ 2.9489 η8- 3.6225 η7+ 2.7374 η6- 1.3101 η5+ 0.39733 η4- 0.12302 

η3- 0.0921 η2+ 0.57787 η + 0.54876. 

Moreover, tables (3-13) explain the variation of 𝐶𝑓 and 𝑁𝑢 in three different cases of 𝜉 at the two plates (cold 

plate at 𝜂 =0 and hot plate at 𝜂 =1.) in symmetric  and asymmetric heating under effect different parameters at the 

standard values 𝑀=1, 𝐾=1, 𝑅𝑑=1, 𝐻=1, 𝐸𝑐= 0.01, 𝑘𝑛=0.05 and 𝑙𝑛=1.667, respectively. It is observed that: 

1. local wall shear stress or skin friction coefficient 𝐶𝑓: 

✓ Decreases at 𝜂 =0 and increases at 𝜂 =1 with an increase in 𝑀. 

✓ Increases at both 𝜂 =0  and 𝜂 =1with an increase in 𝑘𝑛 and 𝑙𝑛. 

✓  An enhancement at 𝜂 =0 and a reduction at 𝜂 =1 with an increase in 𝐾, 𝑅𝑑, 𝐻 and 

𝐸𝑐. 

2. local surface heat flux 𝑁𝑢: 

✓ Increases at 𝜂 =0 and decreases at 𝜂 =1 with an increase in 𝑅𝑑. 

✓ Increases at both 𝜂 =0  and 𝜂 =1 with an increase in 𝑘𝑛 and 𝑙𝑛. 

✓ Decreases at 𝜂 =0 and increases at 𝜂 =1 with an increase in 𝐻 and 𝐸𝑐. 

Furthermore, tables (3-14) in the case 𝜉= 0.5 shows the comparisons with previously published works [8]. It 

should be highlighted that the current findings are highly accurate and show great agreement. 

Table 3: Action of 𝑀 on 𝐶𝑓. 

M 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.5 0.0186758 -0.209008 0.164241 -0.291129 0.309808 -0.373252 0.3098 -0.3733 

1 0.0148545 -0.203014 0.155152 -0.280593 0.295451 -0.358173 0.2954 -0.3582 

1.5 0.0114574 -0.197499 0.146951 -0.270981 0.282445 -0.344464 0.2824 -0.3445 

Table 4: Action of K on 𝐶𝑓. 

K 𝜉=- 0.5 𝜉= 0 Present ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.3 0.00177262 -0.180445 0.122731 -0.241881 0.243689 -0.303316 0.2437 -0.3033 

0.6 0.0104088 -0.195756 0.144393 -0.267962 0.278378 -0.340167 0.2784 -0.3402 

0.9 0.0140652 -0.201749 0.153257 -0.278382 0.292451 -0.355015 0.2924 -0.3551 
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Table 5: Action of 𝑅𝑑 on 𝐶𝑓. 

𝑅𝑑 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

1 0.0148545 -0.203014 0.155152 -0.280593 0.295451 -0.358173 0.2954 -0.3582 

2 0.0168905 -0.205984 0.159847 -0.285911 0.302806 -0.365839 0.3028 -0.3659 

3 0.0180379 -0.207639 0.162481 -0.288883 0.306926 -0.370128 0.3069 -0.3702 

Table 6: Action of 𝐻 on 𝐶𝑓. 

H 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

1 0.0148545 -0.203014 0.155152 -0.280593 0.295451 -0.358173 0.2954 -0.3582 

2 0.0201812 -0.210697 0.167376 -0.294388 0.314573 -0.37808 0.3146 -0.3781 

3 0.0263944 -0.219335 0.181419 -0.310047 0.336447 -0.400761 0.3364 -0.4008 

Table 7: Action of 𝐸𝑐 on 𝐶𝑓. 

𝐸𝑐 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.02 0.0148555 -0.203015 0.155155 -0.280596 0.295457 -0.358178 0.2955 -0.3583 

0.04 0.0148576 -0.203017 0.155160 -0.280601 0.295468 -0.358190 0.2955 -0.3584 

0.06 0.0148597 -0.203019 0.155165 -0.280607 0.295479 -0.358202 0.2955 -0.3585 

Table 8: Action of 𝐾𝑛 on 𝐶𝑓. 

𝑘𝑛 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.02 0.00101361 -0.219884 0.147945 - 0.293859 0.294877 -0.367836 0.2949 -0.3679 

0.04 0.0106122 -0.208243 0.152982 -0.284737 0.295353 -0.361232 0.2953 -0.3613 

0.06 0.0187734 -0.198130 0.157122 -0.276694 0.295471 -0.355259 0.2955 -0.3553 

Table 9: Action of 𝑙𝑛 on 𝐶𝑓. 

𝑙𝑛 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

2 0.0177989 -0.200894 0.157665 -0.279729 0.297533 -0.358566 0.2975 -0.3586 

4 0.0330821 -0.1907002 0.171247 -0.276327 0.309414 -0.361955 0.3094 -0.3620 

6 0.0453742 -0.183739 0.182996 -0.275241 0.320622 -0.366745 0.3207 -0.3668 

Table 10: Action of 𝑅𝑑 on 𝑁𝑢. 

𝑅𝑑 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

1 -3.03908 -2.77479 -2.20226 - 1.67364 -1.36548 -0.572457 -1.3655 -0.5724 

2 -2.18459 -1.9141 -1.63674 - 1.09572 -1.08893 -0.277288 -1.0889 -0.2773 

3 -1.90037 -1.62641 -1.44957 - 0.901605 -0.998821 -0.176758 -0.9988 -0.1767 

Table 11: Action of 𝐻 on 𝑁𝑢. 

H 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

1 -3.03908 -2.77479 -2.20226 -1.67364 -1.3654848 -0.572457 -1.3655 -0.5724 

2 -3.09198 -2.53125 -2.43516 -1.31364 -1.7783974 -0.0959967 -1.7784 -0.0960 

3 -3.16196 -2.26572 -2.7055 -0.912946 -2.2490993 0.439885 -2.2491 0.4399 

Table 12: Action of 𝐸𝑐 on 𝑁𝑢. 

𝐸𝑐 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.02 -3.03909 -2.77474 -2.20233 -1.67354 -1.365653 -0.572269 -1.3657 -0.5722 

0.04 -3.03914 -2.77466 -2.202467 -1.673352 -1.365989 -0.571893 -1.3660 -0.5718 

0.06 -3.03918 -2.77457 -2.202606 -1.673159 -1.366326 -0.571517 -1.3663 -0.5713 
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Table 13: Action of 𝐾𝑛 on 𝑁𝑢. 

𝑘𝑛 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

0.02 -3.30096 -3.03962 -2.37487 -1.85217 -1.448833 -0.664677 -1.4489 -0.6646 

0.04 -3.12137 -2.85807 -2.25645 -1.72982 -1.391589 -0.601541 -1.3916 -0.6015 

0.06 -2.96125 -2.69596 -2.15104 -1.62042 -1.340878 -0.544848 -1.3409 -0.5448 

Table 14: Action of 𝑙𝑛 on 𝑁𝑢. 

𝑙𝑛 𝜉=- 0.5 𝜉= 0 Present at ξ= 0.5 𝜉= 0.5 [8] 

𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 𝜂 =0 𝜂 =1 

2 -2.96134 -2.69605 -2.15110 -1.62048 -1.340909 -0.544877 -1.3409 -0.5448 

4 -2.57082 -2.29936 -1.89487 -1.35191 -1.218975 -0.404408 -1.2190 -0.4043 

6 -2.27659 -1.99868 -1.70304 -1.14714 -1.129535 -0.295550 -1.1295 -0.2954 

 

6. Conclusion  

Study on the slip-flow under actions of different parameters in three different cases (𝜉 = −0.5¸ 𝜉 =

0 𝑎𝑛𝑑  𝜉 = 0.5 ) of asymmetric distributions of walls temperature of a vertical micro- porous–channel has been 

made by two different methods of solutions one of them analytically using (DTM) and the other numerically using 

(FDM). The actions of different parameters  𝑀, 𝐾, 𝑅𝑑, 𝐻, 𝐸𝑐, 𝑘𝑛 and 𝑙𝑛 on 𝑓, 𝜃, 𝐶𝑓, and 𝑁𝑢 has been studied 

graphically and numerically. In particular, results for different parameters are summarized in the next two 

paragraphs: 

➢ The fluid velocity 𝑓: 

✓ Increases with an increase in 𝐻, 𝑘𝑛, 𝐾, and 𝑅𝑑 under the effect of 𝜉. 

✓ Decreases with an increase in the magnetic parameter 𝑀. 

✓ Stable state with an increase in 𝐸𝑐. 

✓ Increase at 𝜂 =0 and a decrease at 𝜂 =1 with an increase in 𝑙𝑛. 

➢ The fluid temperature 𝜃: 

✓ Increases with an increase in 𝐻 and 𝑅𝑑. 

✓ Steady-state with an increase in 𝐸𝐶 . 

✓ An enhancement at 𝜂 =0 and a reduction at 𝜂 =1 on increasing 𝑙𝑛 in presence of  𝜉. 

✓ An enhancement in the fluid temperature at 𝜂 =0 and a reduction at 𝜂 =1  on increasing 𝑘𝑛 in 

the two cases of  𝜉 = −0.5 and 𝜉 = 0. But in the third case 𝜉 = 0.5   increases throughout the 

microchannel with an increase in 𝑘𝑛. 

Furthermore, Comparisons with previously published works are performed and showed that the present 

results have high accuracy and are found to be in excellent agreement.  The findings of [2] and [7-9] are backed 

up by this research. 
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List of abbreviations 

2b            Distance between the plates 

 g             Gravity 

T              Temperature 

T1, T2          Temperatures at left and right plates, respectively  

 𝑇𝑚                 Mean temperature 

𝑐𝑝            Specific heat at constant pressure 

              Fluid density 

𝜆              Molecular mean free path 

 𝜉             Wall ambient temperature 

𝑞𝑟            Radiative heat flux 
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σ*            Stephan–Boltzmann constant 

 𝐾            Permeability parameter 

𝐹𝑣            Tangential momentum accommodation coefficient 

𝐹𝑡            Tangential thermal accommodation coefficient 

𝐵0            Uniform magnetic field 

𝛾              Ratio of specific heats 

              The kinematic viscosity 

              Fluid electrical conductivity 


𝑇
            Thermal expansion coefficient 

 𝑢             Horizontally fluid velocity, 

 𝑣             Vertically fluid velocity 

𝑢              Velocity of fluid 

𝜂              Dimensionless variable 

𝑓              Dimensionless velocity 

𝜃              Dimensionless temperature 

𝐸𝑐            Eckert number  

 𝑃𝑟             Prandtl number 

 𝐻            Heat generation parameter 

𝑘𝑛            Knudsen Number               

𝐻𝑎
2            Hartman number 

𝑀             Magnetic parameter 

𝑅𝑑            Radiation parameter 

𝑙𝑛             Fluid wall interaction parameter       

𝐶𝑓            Skin friction coefficient  

𝑁𝑢            Nusslet number (local surface heat flux)       

DTM        Differential transform method  

MDTM     Multi−step differential transform method  

FDM         Finite difference method 

 

References 

[1]   Avci M, Aydin O. Mixed Convection in a Vertical Parallel Plate Microchannel. ASME J. Heat Transfer. 2007; 

129(2), pp. 162–166. 

[2] Chen COK, Weng HC. Natural convection in a vertical microchannel. 2005; Sep 127(9): 1053-1056.  

[3] Jha BK, Aina B, Ajiya AT. MHD natural convection flow in a vertical parallel plate microchannel. Ain Shams 

Engineering Journal. 2015; 6.1: 289-295.  

[4] Chambre PA, Schaaf SA.  Flow of rarefied gases. In Flow of Rarefied Gases. Princeton University Press 2017. 

[5] Larrode FE, Housiadas C, Drossinos Y. Slip-Flow Heat Transfer in Circular Tubes. Int. J. Heat Mass Transfer.  

2000; 43, pp. 2669–2680.  

[6] Yu S, Ameel TA. Slip-Flow Heat Transfer in Rectangular Microchannels. Int. J. Heat Mass Transfer. 2001; 

44, pp. 4225–4234.  

[7] Venkateswarlu M, Prameela M, Makinde OD. Influence of heat generation and viscous dissipation on 

hydromagnetic fully developed natural convection flow in a vertical micro-channel.  Journal of Nanofluids. 

2019; 8.7: 1506-1516.    

[8] Ponna B, Venkateswarlu M. Influence of Heat Generation and Thermal Radiation on MHD Flow in a Vertical 

Micro-Porous-Channel in the Presence of Viscous Dissipation. Mapana Journal of Sciences. 2021; 20.2: 27.    

[9] Jha BK, Babatunde A. Impact of Viscous Dissipation on Fully Developed Natural Convection Flow in a 

Vertical Microchannel. Journal of Heat Transfer.  2018; 140.9.      

[10] Ha BK, Aina B, Joseph SB. Natural convection flow in a vertical micro-channel with suction/injection. 

Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 

2013; 228.3: 171-180.  

[11] Larrode FE, Housiadas C, Drossinos Y. Slip-flow heat transfer in circular tubes. Int J Heat Mass Transfer. 

2000; 43:2669–80.  



              NEW INVESTIGATION OF ASYMMETRIC WALL TEMPERATURE…                        57 

 

[12] Yu S, Ameel TA. Slip-flow heat transfers in rectangular microchannels. Int J Heat Mass Transfer. 2001; 

44:4225–34. 

[13] Ganji DD, Malvandi A. Magnetohydrodynamic Mixed Convective Flow of Al2O3–Water Nanofluid Inside 

a Vertical Microtube. J. Magn. Magn. Mater. 2014; 369, pp. 132–141.  

[14] Avci M, Aydin O. Mixed Convection in a Vertical Micro Annulus Between Two concentric Microtubes. 

ASME J. Heat Transfer. 2009; 131(1), p. 014502.  

 [15] Sadeghi M, Sadeghi A, Saidi MH. Gaseous Slip Flow Mixed Convection in Vertical Microducts of Constant 

but Arbitrary Geometry. AIAA J. Thermophys. Heat Transfer. 2014; 28(4), pp. 771–784.  

[16] Altunkaya AN, Avci M, Aydin O. Effects of Viscous Dissipation on Mixed Convection in a Vertical Parallel-

Plate Microchannel with Asymmetric Uniform Wall Heat Fluxes: The Slip Regime.  Int. J. Heat Mass 

Transfer. 2017; 111, pp. 495–499.  

[17] Jha BK, Aina B. Mathematical modelling and exact solution of steady fully developed mixed convection 

flow in a vertical micro–porous–annulus. J. Afrika Matematika. 2015; Vol. 26, 1199–1213.  

[18] Mekheimer KS, Shankar BM, Ramadan SF, Mallik HE, Mohamed MS. On the stability of convection in a 

non-newtonian vertical fluid layer in the presence of gold nanoparticles: drug agent for thermotherapy. 

Mathematics, (2021); 9(11), 1302. 

[19] Abbas W, Mekheimer KS, Ghazy MM, Moawad AMA. Thermal radiation effects on oscillatory squeeze 

flow with a particle‐fluid suspension. Heat Transfer, (2021); 50(3), 2129-2149. 

[20] Abdelsalam SI,  Mekheimer KS, Zaher AZ. Dynamism of a hybrid Casson nanofluid with laser radiation and 

chemical reaction through sinusoidal channels. Waves in Random and Complex Media. (2022), 1-22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58                                                                          Hussein A. Soliman 

 

دراسة جديدة لدرجة حرارة الجدار غير المتكافئة والتفاعل بين السائل الكهرومغناطيسي والجدار على 

 بالكامل في القناة العمودية الصغيرة المسامية  لمستقرالحمل الحراري الإشعاعي ا

 حسين عبد الله سليمان 

 مصر  -أكتوبر 6 -  الأكاديمية الدولية للهندسة وعلوم الاعلام  - شعبه الهندسة -قسم العلوم الأساسية

 الملخص: 

يمكن استخدام هذا النوع من البحث لتحسين تصميم المضخات الدقيقة ومبادلات الحرارة الدقيقة. من المهم للغاية فهم خصائص تدفق 

الات من  السوائل ونقل الحرارة للمضخة الدقيقة التي يسببها الطفو والمبادل الحراري الصغير في الأنظمة الحرارية والموائع الدقيقة. في ثلاث ح

تم فحص تأثير التبديد اللزج وتوليد الحرارة على تدفق الحمل الحراري   دقيقة،يعات غير المتكافئة لدرجة حرارة الجدران لقناة عمودية مسامية التوز

قة  وعددياً باستخدام طري (DTM)التفاضلي  الطبيعي الثابت الإشعاعي المطوّر بالكامل بشكل تحليلي باستخدام طريقة التحويل    الكهرومغناطيسي

يتم أخذ كل من انزلاق السرعة وظروف قفزة درجة الحرارة في الاعتبار نظرًا لأن لهما تأثيرات متعارضة على معدل   .(FDM)  المحدودةالفروق  

ارة  على التوالي. توضح الرسوم البيانية والجداول تأثير كل معلمة تحكم على السرعة غير الأبعاد ودرجة الحر  الحرارة، تدفق الحجم ومعدل نقل  

ارنة مع  وإجهاد قص الجدار المحلي وتدفق حرارة السطح المحلي عند أسطح القناة الدقيقة. تم التحقق من صحة النتائج التي تم الحصول عليها بالمق

 أقرانهم المنشورة سابقا. 


