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ABSTRACT
The torsion of a long elastic bar possessing a normal cross-section bounded by a nephroid is considered by means of an 

expansion in polar harmonics, in conjunction with boundary collocation method and the boundary representation of harmonic 
functions.

Three types of nephroids are investigated and comparison is carried out between all three cases in what concerns the e¢ 
ciency of the used method.

The results are illustrated in three-dimensional plots of the unknown functions of practical interest.
Keywords: Theory of elasticity; plane elasticity; torsion of prismatic rods; boundary integral method; numerical solution; 

collocation method.
INTRODUCTION

The problem of torsion in the linear Theory 
of Elasticity has received considerable attention 
long ago as being a problem of practical inter-
est. A large variety of torsion problems has been 
tackled using analytical techniques, mainly rely-
ing on results from the Theory of Potential. The 
basics of Torsion Theory may be found in all clas-
sical textbooks on the Theory of Elasticity [30, 
64, 67, 69]. Due to the increasing mathematical 
di¢ culties encountered in the theoretical studies 
of torsion problems involving arbitrary bound-
ary shapes, many purely numerical or semi-
analytical techniques have been used to solve 
such problems, including irregular boundaries, 
boundaries with corners and three-dimensional 
cases. [33, 35, 47, 48, 62, 70]. Christiansen [25] 
presents a review of integral equations to solve 
St. Venant s torsion problem. Jaswon and Pon-
ter [41] develop a boundary integral equation to 
solve the torsion problem and present the solu-
tion to many geometries of the boundary, includ-
ing boundaries with corner points like triangles 
and rectangles. Lo and Niedenfuhr [57] use an 
integral equation to solve the torsion problem, 
while Ponter [60] deals with the inhomoge-
neous torsion problem. Bhargava and Puranik 
[14, 15] investigate the torsion of prismatic bars 
with multiconnected normal cross-section by 
boundary integrals. Boundary integral equations 
are also used in [75] to solve torsion problems. 
Torsion of bars with boundaries having corner 

points is also treated by Kolodziej and Fraska 
[50] and for special types of boundaries in [13]. 
Torsion of composite bars by boundary element 
method was treated in [46]. Holl and Anderson 
[39] studied the limits of deviation of the ap-
proximate solution of a torsion problem from the 
exact solution.

The numerical methods are considered to 
be powerful and necessary tools for analyzing 
a wide range of engineering applications. The 
tremendous development of computer technol-
ogy in the past few decades has added to the 
importance of the numerical methods by allow-
ing di¢ cult numerical tasks and time-consuming 
calculations to be implemented relatively easily. 
The level of accuracy was raised consequently. 
The use of mesh-based methods, such as nite 
di⁄erences, nite elements or nite volumes meth-
ods have been widely investigated. In all meth-
ods, the natural boundary of the body is usually 
replaced by a polygonal shape which involves a 
multitude of corner points and necessarily adds 
or deletes parts to the real region occupied by 
the body. This, in turn, necessitates the applica-
tion of boundary conditions on arti cial boundar-
ies, a fact that introduces additional inaccuracies 
into the solution. Minimizing the error requires 
large computing times. One way for the e⁄orts to 
overcome these problems was the self-adjusting 
mesh generation at each iteration level and tests 
for minimal error. This, however, is a di¢ cult 
task which requires advanced methods. The 
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second way to overcome such problems and re-
move many of the disadvantages of the numeri-
cal techniques was the use of alternative, semi-
analytical treatments. An increasing interest in 
developing the so-called meshless methods has 
been witnessed in the past few decades. Such ap-
proaches are usually classi ed under the general 
title of Boundary Integral Methods. They have 
the advantage of reducing the volume of cal-
culations by considering, at one stage, only the 
boundary values of the unknown functions and 
then using them to nd the complete solution in 
the bulk. In addition, these procedures deal ex-
clusively with the real boundary of the medium, 
restricted, though, to certain regularity condi-
tions and need not introduce arti cial boundaries. 
An extensive account of boundary integral equa-
tion methods in potential theory and in elastos-
tatics may be found in [42]. Boundary methods 
were also treated by Herrera and Gourgen [38]. 
Boundary integral equations to solve Laplace s 
equation in two-dimensions were treated in [16, 
17]. Treatment of boundary singularities is dealt 
with in [65]. Constanda [27, 28] investigates the 
use of boundary integral equations in plane elas-
ticity.

Meshless methods for solving boundary val-
ue problems have been extensively popularized 
owing to their exibility in engineering applica-
tions, especially for problems with discontinui-
ties and because of high accuracy of the comput-
ed results. They focus only on the points, instead 
of the mesh elements as in the conventional nite 
element method. A meshfree method does not 
require a mesh to discretize the domain of the 
problem under consideration, and the approxi-
mate solution is constructed entirely based on 
a set of scattered nodes. The meshless methods 
often lead to boundary integral equations [10, 
18, 53]. This is one of the strong points of these 
methods, since the integral equations have been 
a focus of interest long ago. Several theorems 
on existence, uniqueness and stability of solu-
tions of integral equations were established. In 
recent years, there has been a growing interest 
in the integro-di⁄erential equations. A review of 
boundary integral equations is presented in [59]. 
Several domain type meshfree methods, among 
which the meshless Petrov-Galerkin method [9, 

11, 12] have been proposed. Applications to po-
tential problems are investigated in [71]. These 
methods achieved remarkable progress in solv-
ing a wide range of static and dynamic problems. 
In concept, any consistent set of boundary condi-
tions will yield a solution within the framework 
of meshless methods. Practically, boundary con-
ditions may be very cumbersome and yield sin-
gularities in the integral equations which cause 
numerical di¢ culties. This is the case in bound-
ary-value problems with mixed boundary con-
ditions. The use of boundary integrals to solve 
concrete problems of the Theory of Elasticity 
and in other special contexts may be found in [2, 
3, 32, 34, 63, 66].

Tre⁄tz in 1926 [68] introduced a method, later 
named the Tre⁄tz method, for solving boundary-
value problems. It soon became quite popular. 
In this method, the solution to the considered 
problem is expressed as a superposition of func-
tions satisfying the governing equation. Various 
versions of the Tre⁄tz method, e.g., direct and 
indirect formulations have been developed. The 
unknown coe¢ cients are then determined by 
matching the boundary condition. A review of 
Tre⁄tz method may be found in [49] and contri-
butions on this topic in [31, 55, 72, 73]. The rela-
tion between the method and the boundary inte-
gral equations is revealed in [40]. Investigation 
of some problems by Tre⁄tz method is carried 
out in [1]. A comparison between Tre⁄tz meth-
od and other boundary methods may be found 
in [56]. Comparison with nite element method 
was investigated in [51] for some two-dimen-
sional problems. This method was also applied 
in conjunction with other methods in solving 
plane problems of static Elasticity, Thermoelas-
ticity and Thermo-magnetoelasticity [4]-[7]. The 
analysis of Tre⁄tz method in what concerns the 
completeness of the used expansion basis was 
undertaken by Jirousek and Wr blewski [43], and 
by Herrera [36, 37]. The collocation method col-
location method in conjunction with a boundary 
Fourier expansion was treated in [74, 8].

Tre⁄tz method and MFS are both mesh reduc-
tion methods. Boundary collocation techniques 
are among meshless methods. They are getting 
much attention for the solution to various partial 
di⁄erential equations which are useful in many 
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practical applications. The history of boundary 
elements has been reviewed in a recent paper by 
Cheng and Cheng [23]. The use of these meth-
ods involves boundary discretization and hence 
provides a reduction in the dimensionality of the 
problem.This, in turn, increases the e¢ ciency 
of the solution method considerably and also 
provides a direct and more accurate estimate of 
the gradients at the boundary compared to other 
methods. Although boundary methods are most 
suitable for linear problems (constant physical 
parameters, geometric linearity, etc.), they can 
be useful for the study of nonlinear problems as 
well [24].

In the potential theory, it is well known that 
the method of fundamental solutions (MFS) can 
solve potential problems e¢ ciently. Extensive 
applications in solving a broad range of prob-
lems have been investigated [29, 44, 45, 58, 61]. 
The MFS can be viewed as an indirect bound-
ary element method (BEM) with concentrated 
sources instead of boundary distributions. The 
initial idea is to approximate the solution of La-
place s equation through a linear combination of 
fundamental solutions with sources located out-
side the domain of the problem. Moreover, it has 
certain advantages over BEM, e.g., no singular-
ity and no boundary integral. However, ill-posed 
behavior is inherent in the regular formulation. 
Mathematical studies on the MFS have been in-
vestigated by some researchers. Bogomolny [19] 
studied the stability and error bound of MFS. 
Christiansen and Hansen [26] used the e⁄ective 
condition number to carry out an error analysis 
of some collocation methods. They found that 
the condition number of the coe¢ cient s matrix 
of MFS is much worse than that of the Tre⁄tz 
method. Li et al. [54] investigate special approx-
imation boundary methods for Laplace s equa-
tion with a view towards boundary singularities.

The boundary element method (BEM) is a 
numerical computational method of solving lin-
ear partial di⁄erential equations which have been 
formulated as integral equations, i.e. in boundary 
integral form. It can be applied in many areas of 
engineering and science, including uid mechan-
ics, acoustics, electromagnetics and fracture me-
chanics. Interested reader is referred to the work 

of Brebbia [20] and Brebbia and Dominguez 
[21].

The present work investigates the torsion of a 
long elastic bar possessing a normal crosssection 
bounded by a nephroid, by means of moments 
applied to the bases, the lateral surface being 
stress free. The warping function is expressed as 
an expansion in polar harmonics and the coe¢ 
cients are determined by Boundary Collocation 
Method. The resulting system of linear algebraic 
equations is tested each time for the determinant 
and the 2-norm of the matrix of coe¢ cients to 
avoid ill-posedness. The obtained solution is then 
used to evaluate the maximum error in satisfying 
the main theorem on the boundary representa-
tion of harmonic functions in discretized form 
and after regularization. This is taken as a mea-
sure of the e¢ ciency of the proposed scheme. 
A table shows the maximum error against the 
number of nodes used in the discretized form 
of the boundary integral representation. Three 
types of nephroids are investigated and com-
parison is carried out between the three cases in 
what concerns the e¢ ciency of the used method 
and the distribution of stresses in the bulk. The 
results are illustrated in three-dimensional plots 
of the unknown functions of practical interest. It 
is shown that the convergence of the procedure 
becomes weaker as the lobes of the nephroid are 
more pronounced.

Problem formulation and basic equations

Let the bases of the homogeneous isotropic 
prismatic elastic bar be acted upon by forces that 
reduce to twisting couples. It will be assumed 
that the body forces are absent and that the later-
al surface of the bar is free from external forces. 
The normal cross-section of the bar is a two-
dimensional, simply connected region bounded 
by a closed contour S . A system of orthogonal 
Cartesian coordinates (x;y;z) is used in the plane 
of , with origin at O 2 , the z-axis being parallel 
to the generators the lateral surface.

For the application, the normal cross-section 
is in the form of a nephroid with major and 
minor axes lengths respectively. The 
parameter a is taken as a representative length 
for the problem. Its value is taken equal to 1 for 
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convenience. The parametric equations of the 
boundary in dimensionless form read

 
 

where θ is the polar angle in the plane of the 
cross-section de ned in the usual way, and

. Three cases of interest are 
represented on Figs.(1,2,2). The following val-
ues

of the parameters are used: h = 0:45 for Fig.
(1); h = 0:35 for Fig.(2) and h = 0:35 for

Fig.(2).

Let be the unit vector tangent to S at a general 
point Q in the sense of increase of and n the unit 
outward normal to S at Q. The ordered pair fn; 
g forms a right-handed system. It can be shown 

that

                                                (2)

the dot over a symbol denotes di⁄erentiation 
w.r.t. and

                                                                           (3)

If the natural parametric representation for 
the boundary S is used, i.e. if the running param-
eter on the boundary is the arc length, then

$ = 1:

It is worth noting that S is su¢ ciently smooth, 
as this is an important factor for an e¢ cient ap-
plication of the proposed method. Torsion of cyl-
inders with cross-section having angular bound-
ary points will be considered in separately.

Torsion of prismatic rods

The solution of the formulated problem in 
terms of displacements is sought by Saint Venant 
in the form

                                                                  (4)

where is a constant called the degree of 
twist and (x;y) is a function to be determined. 
It is known as Saint Venant s torsion function 
or warping function. Displacements (4) show 
that the cross-sections do not remain plane but 
warp. Moreover, all sections warp identically. 
The only cross-section that does not warp was 
known to be the circular one. Later on, Chen 
[22] has shown that elliptical cross sections may 
also exhibit zero warping under some condition: 
The cylinder needs to be rectilinearly orthotropic 
in which the ratio of two associated shear rigidi-
ties equals the square of the aspect ratio of the 
ellipse. Physically, this means that the elastic or-
thotropy of the shaft can serve to compensate the 
geometric deviation from a circular cross-sec-
tion to an elliptical one. As Chen points out, the 
idea can be further generalized to show that the 
zero warping property also holds for a number 
of composite cylinders consisting of an elliptical 
core or cavity coated with many similarly ellipti-
cal layers of di⁄erent materials.

                                                                    (5)

The stress tensor components corresponding 
to the displacements in (4) are expressed as:
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and

                                                             (6)

Here is one of two LamØ coe¢ cients charac-
terizing the elastic material.

In the absence of body forces, the warping 
function is harmonic in the variables x ,y in the 
region S occupied by the cross-section of the 
body: 2

  
 (7)

Let (x;y) be the harmonic conjugate to the 
function (x;y). The Cauchy-Riemann conditions 
are:

(8)

The boundary condition satis ed by the func-
tion (x;y) is:

  (9)

where C is an arbitrary constant, while the 
components of the stress tensor are obtained 
from as:

  . (10)

It is well seen from the above formulas that 
the solution of the problem will not change if 
a constant is added to the function (x;y). Con-
sequently, the determination of this function is 
reduced to solving the Dirichlet problem for La-
place s equation.

The shearing stresses applied to the cross-
section reduce to a couple of moment

 (11)

Inserting into this formula the values of zy; zx 
calculated from formulas (5) , one nally obtains

In this formula

is the torsional rigidity. If Mt is the twisting 
moment or torque at a base, then the equilibrium 
condition yields Mt = M = D ;from which

:

Boundary integral representation of harmon-
ic functions

Let F be a harmonic in . One uses the well-
known integral representation from Potential 
Theory for F at an arbitrary eld point (x;y) in in 
terms of the boundary values of the function F 
and it s complex conjugate Fc in the form

 (12)

where R is the distance between the point 
(x;y) in and the current integration point (x( 0);y( 
0)) on S.

The representation of the conjugatate func-
tion is given by

 : 

(13)

the integral representations (12, 13 ) for the 
harmonic function F; Fc replace the usual Cau-
chy-Riemann conditions.

When the point (x;y) tends to a boundary 
point  relation (12) yields:

  

(14)

Replacing  by  in (12,13) and 
their boundary version (14), where is the har-
monic conjugate of lnR, it is readily seen that 
these integral relations are invariant under the 
transformation of parameter from the arc length 
s to any other suitable parameter. This property 
makes the method more exible. In view of the in-
tegral representations (12, 13), it is su¢ cient for 
the complete solution of the mechanical problem 
in the region to determine the boundary values 
of the harmonic function F, as well as those of 
the harmonic conjugate. This requires two inde-
pendent relations in these unknowns, obtained 
from (14) written for.F and it s conjugate. For 
the application, it is more convenient to use the 
following form of the integral representation for 
any harmonic function F:

 : (15)
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Numerical scheme for the solution

In this section the di⁄erential and integral 
operators appearing in the equations are to be 
discretized as usual and the problem of determi-
nation of the boundary values of the unknown 
functions reduces to nding the solution of a lin-
ear system of algebraic equations. The full so-
lution is then obtained by numerical quadrature 
according to (13 ,14 ,15).

The discretization procedure

The contour of integration S will be divided 
into a nite numberp of segments G1;G2;:::;Gp of 
respective lengths S1; S2;:::; Sp not necessarily 
equal. For convenience only, the value of p will 
be chosen so that (p 1) is divisible by 4. Let Qi 
= (xi;yi) be the midpoint of the segment Gi (i = 
1;2;:::;p) with corresponding value Si of the pa-
rameterS (the points Qi may in fact be arbitrarily 
chosen in the intervals Gi ). The lengths of these 
segments are chosen small enough so that the 
value of any continuous function f(s) de ned on 
S may be approximated on the segment Gi by it 
s value at the point Qi ,denoted fi :The point Q0 
appearing in the above formulation is identi ed 
with any one of the points Qi ,say Q1: Any con-
tour integration on S will be replaced, as an ap-
proximation, by the Riemann sum

  , 

(16)

The total number of unknowns on the bound-
ary is 2p representing the values of the harmonic 
functions ; c, where c is the complex conjugate of , 
at the points Qi (i = 1;2;3;:::;p). These unknowns 
will be considered as the components of a 2p -di-
mensional vectorX with components(X1;X2;:::;X2p) 
de ned according to the rule:

This procedure for the unknowns 
(X1;X2;:::;X2p) yields an overdetermined system 
of linear algebraic equations which can be writ-
ten in the matricial form

 AX = B; (17)
the general elements (Amn) and(Bm) of matrix 

A and vector B are determined in the following 
subsection.

Discretization of the Cauchy-Riemann condi-
tions

This concerns the discretization of equation 
(15) and provides 2p rows in the coe¢ cient s 
matrix. The discretization of this equation leads 
to the following p algebraic equations.

  

(18)

where  and  denote respectively the di-
rected derivatives along the normal and the

tangent to the contour S at the point Qj and Rij 
is the distance between the two points Qi and Qj. 
Clearly, when i = j there will be a singularity in 
the corresponding summation term and this re-
quires a special treatment to remove it. For con-
venience, one sets

  , 

(19)

The following formulas may be easily veri ed [7]

 (20)

  , 

(21)

Formulas (19, 20, 21), to our belief, are more 
accurate than those usually used in the boundary 
integral equation methods existing in the litera-
ture. These methods replace the actual bound-
ary by a polygon over which the line integrals 
are performed , while the present formulation 
takes into account the shape of the actual bound-
ary through the rst and the second derivatives 
of the functions x(s);y(s). The quantities xi;yi as 
well as their derivatives w.r.to the parameter s 
are known once the contour has been precised. 
Formula (21) requires the existence and conti-
nuity of the second derivatives of the functions, 
i.e. the closed boundary S must belong to class 
C2 at least. In fact, this is the condition imposed 
by Constanda when investigating the uniqueness 
and existence of the solution by the Boundary 
Integral Method .
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For the part involving Zij one has [7]

Calculation of the harmonic functions at in-
ternal points

Having determined the boundary values of 
the harmonic functions on the boundary by using 
formulae for the dimensionless function i :

  (22)

One takes k = 0:01 in case (I) and k = 0:005 
in case (II) and k = 0:5 in case (III). The addi-
tional constant has no physical implications, its 
value amounts to xing the value of the harmonic 
conjugate function at an arbitrarily chosen point 
of the domain. Numerical experiments, howev-
er, have indicated that the value of this constant 
may strongly a⁄ect the calculations. For best re-
sults, one chooses k as follows: k = 0:1 in case 
(I), k = 0:3 in case (II) and k = 0:6 in case (III).

The Boundary Collocation Method is then 
applied to determine the coe¢ cients in these 
expansions in terms of the previously obtained 
boundary values of these functions. The result-
ing system of linear algebraic equations was 
solved by Least Squares method. Each time, the 
determinant and the 2-norm of the coe¢ cient s 
matrix was calculated to avoid ill-posedness of 
the system, the results are shown on the Table 
below. Also, the solution was substituted again 
into the equations in order to con rm its exacti-
tude.

where c1 is an arbitrary constant.(c1 = 0 in all 
cases). The values of these functions can be de-
termined at any point (x;y) in the cross-section 
domain by using the expansions of the basic 
harmonic functions in terms of a complete set of 
harmonics as follows:

In the end, the obtained expansions were sub-
stituted again into the boundary integral repre-
sentation of harmonic functions in discretized 
form and after regularization. The maximum er-
ror in satisfying these conditions is noted in the 
Table below. It will serve as a measure of the e¢ 
ciency of the used procedure. The stress compo-
nents may now be calculated from (10):

Numerical results and discussion

The value of p was taken such that (p 1) be 
divisible by 4 for convenience. In fact, only 5 
nodes were required to obtain the coe¢ cients of 
the expansion. Further increase of the number of 
nodes up to 201 nodes was used to verify the 
boundary integral representation of harmonic 
functions. The following Table shows the de-
terminant and the 2-norm of the matrix of coe¢ 
cients in determining the coe¢ cients of the ex-
pansion and the value of the twisting moment for 
the three cases under consideration by 5nodes.
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case (I) case (II) case (III)

det -0.0376 -0.0086 -0.0917

2-norm 19.30 212.7 2159.5

M 1.57 3.86 0.8161
Ultimately, the basic harmonic function and 
its conjugate could be plotted in 3-dimensions 
in the cross-section domain (Figs.(6)-Fig.(6)), 
as well as the stress components acting on the 
cross-section (Figs.(6)-Fig.(6)). The results are 
shown below, where the domain of the solution 
(the normal cross-section of the cylinder) has 
also been represented together with the plotted 
functions for convenience.

The following Table shows the error in sat-
isfying the boundary integral representation of 
harmonic functions against the number of nodes.

p case (I) case (II) case (III)

5 0:00998 0:00893 0:00954

73 0:00640 0:00201 0:56921

121 0:00039 0:00095 0:00694

161 0:00029 0:00074 0:00130

201 0:00023 0:00059 0:00099
It is readily seen that the warping function, as 
well as the stresses, for the ellipse-like contour 
are qualitatively di⁄erent from those of the con-
tour with two lobes. This is compatible with the 
fact that the ellipse-like contours are the only 
convex nephroids. The symmetry properties of 
the stress components are obvious. It is also no-
ticed that the 2-norm of the matrix grows larger 
as the lobes of the boundary become more pro-
nounced, so one expects the e¢ ciency of the 
method to deteriorate in that case. This is accom-
panied by a growth of the stresses and a slower 
convergence of the maximum error to zero.
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