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ABSTRACT: 
We study the solar photospheric abundance of singly ionized neodymium (Nd II) using high resolution spectroscopic data 

obtained by Fourier transform spectrograph (FTS). Based on the Local Thermodynamical Equilibrium (LTE) assumption, 
a new value of Nd abundance is derived. We succeed to select of 51 solar Nd II lines with accurate transition probabilities 
measured experimentally by Den Hartog et al.  (2003) and with accurate damping parameters are determined from literature. 
Relying on atomic data of Opacity Distribution Function (ODF), we construct theoretical photospheric solar model.The mean 
solar photospheric abundance obtained from all 51Nd II lines is log εNd= , which is mostly similar to the meteoric 
value.
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1. INTRODUCTION 

The solar chemical composition is a funda-
mental yardstick in astronomy but has been heav-
ily debated in recent times. Although Nd I neutral 
lines are not observed in the solar photosphere, 
the solar photospheric spectrum does show more 
than 20 times of Nd II lines comparing with of 
Nd III lines. Numerous analysis show that dif-
ferent results have been published on the solar 
photospheric abundance of neodymium leading 
to a longstanding debate obtained from the study 
of Nd II lines due to a lack of atomic data such 
as gf-values. Suitable solar Nd II lines exist with 
accurate experimental gf-values is measured by 
Den Hartog et al. (2003), which permit us to de-
termine the LTE solar photospheric abundance 
of neodymium.

The chemical composition of the solar pho-
tosphere has been studied by many investigators 
(Anders and Grevesse 1989; Grevesse and Sau-
val 1998; Cunha and Smith 1999; Asplund 2000; 
Lodders 2003; Asplund et al. 2005; Grevesse 
et al.2007; Shi et al. 2008; Lodderset al.2009; 
Asplund et al. 2009; Shchukina et al. 2012; 
Shaltout et al. 2013).Different results obtained 
from the solar photospheric abundance of Nd II 
lines are published in these papers by Ward et 
al. 1984( ), Ward et al. 1985 
( ) and Den Hartog et al. 
2003( ).

2. The LTE theoretical Temperature model

The Solar model atmospheres are the main 
ingredient for providing the basic background of 
the spectral line formation. To obtain fundamen-
tal information about the sun’s chemical compo-
sition from the solar spectrum, it is essential to 
have realistic models of the solar atmosphere. In 
the present work, the most widely semi-empiri-
cal solar model used for the abundance of Nd is 
the Holweger and Müller (1974, hereafter, HM) 
model, while our theoretical model is obtained 
under the assumption of LTE in radiative-con-
vective equilibrium, where convection is treated 
in a mixing-length approach. The Atlas9 Fortran 
code written by kurucz (1993) is used to obtain 
the temperature model. For more details, our 
LTE theoretical temperature model is derived 
with the effective temperature Teff = 5777 K, 
the surface gravity (cm/sec2) log (g) = 4.4377 
and the metallicity log [M/H] = 0.0. The solar 
photospheric abundances of all elements are 
adopted from Grevesse and Sauval (1998). The 
microturbulent velocity in the line opacity with 
1.0 km s−1 is taken into account.Fig. (1) shows 
the comparison between our theoretical model 
(dotted line) with HM (solid line) solar model.
This investigation assumes only the opacity 
source based on ODF, since it seems worthwhile 
extending our contribution to photospheric solar 
neodymium abundance between two atmospher-
ic models.As evident from Fig. (1), we compare 
the two photospheric models in the range of 
optical depth between to -4.5. The 
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ODF (dotted line) solar model shows a small 
difference comparing with HM model between                                                                                             
                 to . At  some optical 
depth between to , the 
ODF model is comparatively smaller in magni-
tude than the HM model with about a difference 
in temperature by 100 k. In the outer layers, the 
ODF model is slightly cooler than HM model. 

3. RESULTS AND DISCUSSION

In the present work, we derive the solar pho-
tospheric abundance of Nd using two methods to 
confirm our results. The first approach assumes
the LTE line formation with the spectrum syn-
thesis code installed with FORTRAN language, 
which is called SYNTH program written by Ku-
rucz (1993). The second approach is derived by 
fitting the measured equivalent width of single
unblended lines to the computed equivalent 
width using WIDTH9 code, which is a FOR-
TRAN program written by Kurucz (1993) for 
the determination of stellar abundances.

For the LTE line formation spectrum synthe-
sis, only 23 Nd II solar lines are used as well 
as the atomic data (excitation potentials, log gf 
values) is presented in Table (1). The first col-
umn gives the wavelength (nm) of the individual 
lines, while the second column represents the 

Table (1):A summary of line list selected for the solar Nd II lines used in the abun-
dance determination. The 1D refers to one-dimensional temperature model:

λ [nm] [eV]
 [1D]

[HM model]

 [1D]

[Our model]
361.581 0.2046 -0.76 8.23 -5.79 -7.72 1.45 1.43
378.424 0.3802 0.15 8.19 -5.78 -7.72 1.40 1.38
383.898 0.0000 -0.24 8.18 -5.85 -7.74 1.45 1.42
390.022 0.4714 0.10 8.16 -5.79 -7.72 1.60 1.57
399.010 0.4714 0.13 8.14 -5.80 -7.72 1.45 1.41
402.133 0.3206 -0.10 8.14 -5.82 -7.73 1.47 1.44
406.108 0.2046 0.55 8.13 -5.80 -7.73 1.45 1.42
440.082 0.0636 -0.60 8.06 -5.90 -7.76 1.45 1.41
444.638 0.3802 -0.35 8.05 -5.88 -7.25 1.45 1.40
454.260 0.7421 -0.28 8.03 -5.81 -7.73 1.45 1.40
456.322 0.1823 -0.88 8.03 -5.89 -7.75 1.44 1.39
470.654 0.0000 -0.71 8.00 -5.93 -7.77 1.45 1.40
470.972 0.1823 -0.97 8.00 -5.91 -7.76 1.45 1.41
471.559 0.2046 -0.90 8.00 -5.90 -7.76 1.45 1.40
477.772 0.3802 -1.22 7.99 -5.88 -7.75 1.45 1.42
478.611 0.1823 -1.41 7.99 -5.91 -7.76 1.47 1.44
482.034 0.2046 -0.92 7.98 -5.91 -7.76 1.30 1.27
509.279 0.3802 -0.61 7.93 -5.91 -7.76 1.48 1.45
513.059 1.3039 0.45 7.93 -5.77 -7.72 1.46 1.40
525.551 0.2046 -0.67 7.91 -5.94 -7.77 1.45 1.42
527.343 0.6804 -0.18 7.90 -5.88 -7.75 1.40 1.38
529.316 0.8229 0.10 7.90 -5.86 -7.74 1.45 1.42
531.981 0.5502 -0.14 7.90 -5.90 -7.76 1.45 1.42

Solar Nd abundance mean value:
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2. The LTE theoretical Temperature model

The Solar model atmospheres are the main ingredient for providing the basic 
background of the spectral line formation. To obtain fundamental information about 
the sun’s chemical composition from the solar spectrum, it is essential to have 
realistic models of the solar atmosphere. In the present work, the most widely semi-
empirical solar model used for the abundance ofNd is the Holweger and Müller 
(1974, hereafter, HM) model, while our theoretical model is obtained under the 
assumption of LTE in radiative-convective equilibrium, where convection is treated 
in a mixing-length approach. The Atlas9 Fortran code written by kurucz (1993) is 
used to obtain the temperature model.For more details, our LTE theoretical 
temperature model is derived with the effective temperature Teff = 5777 K, the 
surface gravity (cm/sec2) log (g) = 4.4377 and the metallicity log [M/H] = 0.0. The 
solar photospheric abundances of all elements are adopted from Grevesse and Sauval 
(1998). The microturbulent velocity in the line opacity with 1.0 km s�� is taken into 
account.Fig. (1) shows the comparison between our theoretical model (dotted line) 
with HM (solid line) solar model.This investigation assumes only the opacity source 
based on ODF, since it seems worthwhile extending our contribution to photospheric 
solar neodymium abundance between two atmospheric models.As evident from Fig. 
(1), we compare the two photospheric models in the range of optical depth between 

to -4.5. The ODF (dotted line) solar model shows a small difference 
comparing with HM modelbetween to .At some optical 
depth between to , the ODF model is comparatively 
smaller in magnitude than the HM model with about a difference in temperature by 
100 k. In the outer layers, the ODF model is slightly cooler than HM model. 

Fig. (1): Temperature stratifications of Opacity Dis-
tribution Function (ODF) (dotted line) and 
HM (solid line) solar models. 



THE LTE SOLAR ABUNDANCE OF NEODYMIUM 3
atomic data of lower energy in the units of (eV). 
The third column shows the multiplication of the 
statistical weight (g) and oscillator strength (f) 
in the logarithmic scale of gf-values which are 
taken from Den Hartog et al. (2003). The radia-
tive, Stark and van der Waals damping constants 
are shown in the fourth ( , fifth ( ), and sixth 
( )columns,respectively. While the last two 
columns exhibit the derived abundances from in-
dividual solar Nd II lines with HM and our theo-
retical models, respectively. For the equivalent 
width fitting method, we selected a good sample
of 28 solar Nd II lines given in Table (2). As al-
ready discussed above, our explanations of the 
lines are the same as presented in Table (1), but 
in the fourth column the measured equivalent 
widths are shown. For more clarity, the damping 

parameters are not presented in Table (2). The 
atomic data for all of 27 Nd II lines are taken 
from Den Hartog et al. (2003), but we select only 
one Nd II line with the wavelength of (584.239 
nm) from Kurucz database server.

From 23 solar Nd II lines, we derived Nd 
abundances from synthetic spectrum analysis. 
The selected lines are observed with FTS in the 
center of the solar disk. These lines are listed 
in the first column of Table (1); the individual
abundance determined is shown in the last two 
columns. For the synthetic spectrum calculation, 
the present version of the LTE line analysis 
code SYNTH (Kurucz 1993) was employed. We 
adopted the solar model atmosphere of Holweger 
and Müller (1974), and a microturbulent velocity 

Table (2): The LTE line list of singly ionized neodymium Nd II included in the abundance determination:

λ [nm] El [eV] Log gf Wλ [pm]  [1D]

[HM model]

 [1D]

[Our model]
584.239 1.2816 -0.780a 0.095d 1.48 1.45
543.153 1.1211 -0.580 a 0.190 d 1.45 1.42 
537.194 1.4125 -0.357b 0.230 d 1.60 1.57
531.982 0.5502 -0.347 b 0.940 d 1.42 1.38
401.224 0.6305 0.810c 3.900e 1.47 1.41
401.270 0.0000 -0.600 c 1.400 e 1.47 1.42
401.882 0.0636 -0.850 c 0.900 e 1.54 1.49 
402.300 0.5595 0.040 c 1.800 e 1.52 1.47 
336.494 0.1823 -0.900 c 0.500 e 1.54 1.50 
372.813 0.1823 -0.500 c 1.200 e 1.50 1.45 
375.250 0.5595 -0.140 c 1.200 e 1.50 1.45 
376.347 0.2046 -0.430 c 1.400 e 1.53 1.48  
389.094 0.0636 -0.220 c 2.000 e 1.39 1.33
390.022 0.4714 0.100 c 1.600 e 1.32 1.27
399.010 0.4714 0.130 c 2.700 e 1.64 1.58 
402.133 0.3206 -0.100 c 1.600 e 1.36 1.31 
410.945 0.3206 0.350 c 3.900 e 1.61 1.55 
413.335 0.3206 -0.490 c 1.100 e 1.52 1.48 
415.608 0.1827 0.160 c 3.000 e 1.39 1.33 
482.548 0.1827 -0.420 c 1.800 e 1.53 1.48 
525.551 0.2046 -0.670 c 0.700 e 1.26 1.22 
529.316 0.8229 0.100 c 1.000 e 1.27 1.24  
548.570 1.2640 -0.120 c 0.300 e 1.33 1.30  
524.958 0.9756 0.200 c 1.150 e 1.40 1.36  
519.261 1.1365 0.270 c 1.200 d 1.51 1.48  
446.298 0.5595 0.040 c 1.470 d 1.35 1.31
438.566 0.2046 -0.300 c 1.500 e 1.36 1.32 
435.128 0.1823 -0.610 c 1.400 e 1.62 1.57

 Solar Nd abundance mean value:
N.B: a: log (gf)-values measured by Ryder (2012). b: log (gf)-values measured by Ward et al.(1984). c: log 

(gf)-values measured by Den Hartog et al. (2003). d: Equivalent widthsare taken from Ward et al. 
(1984). e: Equivalent widths are taken from Moore et al. (1966).
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of   is used. Fig. (2) shows only two 
samples of synthetic spectrum matches to the Nd 
II lines and surrounding atomic and molecular 
features. When comparing the fitting line
profiles obtained from the synthesis spectrum it
was noticed that a large numbers of Nd II lines 
are less suitable for abundance determination. 
Also, the wings of Nd lines are not fitted well.
It is essential to obtain quantum mechanical 
broadening treatment instead of empirical 
pressure broadening. Up to now, clearly the 
quantum broadening method is applied only for 
neutral lines of any chemical element, as already 
published in the series of papers such as the 
recipes of Anstee and O’Mara (1995), Barklem 
and O’Mara (1997) and Barklem et al. (1998). 
For more clarity, we summarized the reasons 
for the poor agreement in the line profile fitting.
These reasons are:  a) It is obvious that some of 
Nd II lines are suspected blends. 

b) Due toa lack of atomic data of Nd II lines, 
it is expected that the damping parameters of 
Nd II lines affect the line profile fitting. The
mean solar photospheric abundance with HM 
solar model from all 23 Nd II solar lines is

. The derived Nd abundances 
with the wavelength of lines are shown in Fig. 
(3)(a) with a small change in the abundance val-
ues. The abundance obtained is not shown with 
the excitation potential because the total range 
is only 1.3 eV, so the range of excitation poten-
tial is rather small to show its variation with the 
derived abundance.Our result of Nd abundance 
obtained from our theoretical solar model is

 from all 23 Nd II lines. 

Fig. (2): The synthetic profiles of Nd II lines for 470.972nm
(a) and 482.034 nm (b)with (diamonds) compared 
with the observed Fourier Transform Spectrograph 
(FTS) profiles (solid lines). The synthetic profiles are
obtained with HM solar model using the microtur-
blent velocity of 
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Fig. (2): The synthetic profiles of Nd II lines for 470.972nm (a) and 482.034 nm (b)with 
(diamonds) compared with the observed Fourier Transform Spectrograph (FTS) profiles 
(solid lines). The synthetic profiles are obtained with HM solar model using the microturblent 
velocity of 
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Fig. (2): The synthetic profiles of Nd II lines for 470.972nm (a) and 482.034 nm (b)with 
(diamonds) compared with the observed Fourier Transform Spectrograph (FTS) profiles 
(solid lines). The synthetic profiles are obtained with HM solar model using the microturblent 
velocity of 
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Fig. (3):The solar photospheric abundance of Nd II using two approaches.(a) The LTE singly 
ionized neodymium abundance values against 23 Nd II lines from synthetic spectrum
analysisand (b) 28 Nd II lines using WIDTH9 code, wherethe derived abundance with the HM 
model using the microturblent velocityof . The horizontal lines illustrate the 
abundance mean and the standard deviation.

Fig. (3):The solar photospheric abundance of Nd 
II using two approaches.(a) The LTE sin-
gly ionized neodymium abundance values 
against 23 Nd II lines from synthetic spec-
trum analysisand (b) 28 Nd II lines using 
WIDTH9 code, wherethe derived abundance 
with the HM model using the microturblent 
velocityof  . The horizontal lines illustrate 
the abundance mean and the standard de-
viation.
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The difference in the abundance of Nd between 
HM model and our model is ∆ξ = ξ (HM) - ξ (our 
model) = 0.03 dex. It is attributed to the different 
sources of temperature models and neodymium 
lines selected.

For the second approach, we use the WIDTH9 
Fortran program where the abundance of Nd 
II is derived by fitting the measured equivalent
width of single unblended lines (of 28 lines) to 
the computed equivalent width. The measured 
equivalent widths of these lines are taken from 
Moore et al. (1966) and Ward et al. (1984). We 
derived the abundance using the Nd II lines as 
given in Table (2) with one dimensional solar 
Holweger and Müller (1974) and our theoretical 
models. Table (2) displays the final LTE abun-
dance (εNd) obtained with a microturbulent ve-
locity ξ = 1.0 km s−1. The mean value for the so-
lar pho  tospheric abundance of  neodymium is
with HM model from all 28 Nd II lines, where 

the derived Nd abundances with the wavelength 
of lines are shown in Fig. (3) (b). Our result of Nd 
mean abundance obtained  from our the oretical 
solar model is  from all 28 
Nd II lines. Fig. (4) shows the relation between 
the abundances derived from 28 solar lines as 
a function of equivalent width with HM model 
(a) and our model (b). It is clear that similar Nd 
abundance valuesare derived for the two solar 
models.

The mean solar photospheric neodymium 
abundance from all 51 solar lines is, where the 
derived Nd abundances with the wavelength of 
lines are shown in Fig. (5). This figure displays
the values of Nd abundance (1.45), where the 
scatter is ( ) is attributed to many sources of 
gf-values. Asplund et al. (2009) determined the 
solar  photospheric  abundance  of          Nd is  
using the 3D solar model. The meteoritic abun-
dance value of Nd (1.45) is given more recently 
in the review of Asplund et al. (2009). The dif-
ference between our result ( ) and Den 
Hartog et al. (2003) ( ) is the micro-
turbulent velocity adopted. Also, there is a dif-
ference in equivalent width between Den Hartog 
et al. (2003) and Moore et al. (1966).

4. Conclusion  

The present paper presents a new determination 
of the solar Nd abundance by means of detailed 
LTE calculation using both 

Fig. (5): The LTE singly ionized neodymium abun-
dance values against 51 Nd II solar lines, 
where derived with the HM model usingthe 
microturblent velocity of  . The 
horizontal lines illustrate the abundance 
mean and the standard deviation.
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Fig. (4):The individual neodymium abundances derived from 28 Nd II line 
profiles fitting of Nd II as a function of the equivalent width using HM model (a) 
and our theoretical model (b). 

Fig. (4):The individual neodymium abundances derived 
from 28 Nd II line profiles fitting of Nd II as a func-
tion of the equivalent width using HM model (a) and 
our theoretical model (b). 
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Fig. (5): The LTE singly ionized neodymium abundance values against 51 Nd II                                   
solar lines, where derived with the HM model usingthe microturblent velocity 
of . The horizontal lines illustrate the abundance mean and the standard 
deviation.

4. Conclusion  

The present paper presents a new determination of the solar Nd abundance by means 
of detailed LTE calculation using both a semi-empirical model (the venerable 
Holweger and Müller 1974 model) and our theoretical model of solar photosphere.
A new theoretical solar model of the photosphere is derived. Our theoretical model
is slightly cooler than the HM model by 100 K in the outer layers.
In the present work, we have been used two methods for the abundance analysis.The 
first derived value of the abundance ( ) with HM model and our model 
( )using the synthetic spectral line profiles in comparing with the 
observed spectrum made by SYNTH FORTRAN (kurucz 1993). The second derived 
value of HM model ( ) and our model ( )using the observed 
equivalent widths fitting in comparing with the calculated equivalent width with the 
WIDTH9 FORTRAN (kurucz 1993).The reasons for selectingtwomethods in the 
abundance determinations are, first, to feel confident about the result of solar 
neodymium abundance. Secondly, the synthetic spectrum fails to fit some solar Nd 
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a semi-empirical model (the venerable 

Holweger and Müller 1974 model) and our 
theoretical model of solar photosphere.

A new theoretical solar model of the pho-
tosphere is derived. Our theoretical model is 
slightly cooler than the HM model by 100 K in 
the outer layers.

In the present work, we have been used two 
methods for the abundance analysis.The first de-
rived value of the abundance ( ) with 
HM model and our model ( )using 
the synthetic spectral line profiles in comparing
with the observed spectrum made by SYNTH   
FORTRAN (kurucz 1993). The second derived     
value  of  HM  model   ( )    and   our   
model   ( ) using the observed equiva-
lent widths fitting in comparing with the calcu-
lated equivalent width with the WIDTH9 FOR-
TRAN (kurucz 1993).The reasons for selecting 
two methods in the abundance determinations 
are, first, to feel confident about the result of
solar neodymium abundance. Secondly, the 
synthetic spectrum fails to fit some solar Nd II
lines owing to there exist the situation of blended 
lines with any specific line of another element
in the solar spectrum region. Finally the mean 
solar photospheric abundance of neodymium is 
( ) mostly the same abundance value 
of Den Hartog et al. (2003).

The solar photospheric abundance of neo-
dymium using the experimental lifetime mea-
surements are obtained from 51 solarNd II lines 
is  it agrees with the very 
accurate meteoritic data value. This confirms our
new result of solar photospheric abundance of 
Nd. The resulting abundance is very similar to 
the value advocated by more recently of Asplund 
et al. (2009).
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ON USING ANFIS FOR RIVER NILE FLOW FORECASTING
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ABSTRACT
An adaptive neuro-fuzzy inference system ANFIS is used in river Nile flow forecast by two different models; first model

build on using precipitation only as input with the flow as output where in the second one we used precipitation  and zonal wind
over a specific area as inputs with the  flow as output. Several years monthly mean precipitation data over catchments areas
are used as input variable for the two models. In the models, the data sets were divided into the subsets training, checking, and 
testing data sets. In addition, we depend on ANFIS ability in chaotic time series prediction to predict the rivers flow for one
month from the previous precipitation monthly mean data. The presented two models approved good performance with accept-
able root mean square errors RMSE compared with classical statistical methods. All calculations were done under MATLAB 
environment. 

Key words: Flood, forecast, Artificial Intelligence, Fuzzy, Neural networks, hydrology.

1. INTRODUCTION 

Forecasting river flow is a key element in hy-
drology concerns e.g. managing water resources 
and flood control;precipitation with snow melt-
ing play champion ship role in supplying the riv-
ers with fresh water. Where, evaporation, irriga-
tion, water seeping toward underground water, 
and human activities are the sinks. Since that 
process built on many factors.

 Varieties of traditional approaches were 
introduced to achieve water flow forecast
such as linear regression and discriminate 
prediction;descriptions of those two techniques 
were introduced by [15, 1, 9, 16, and 8] used dis-
criminate prediction approach for forecast. Pa-
rameterization approach recently introduced for 
river flow forecast; [19].

The artificial intelligent techniques are wide-
ly used in recent studies in the modeling and 
forecasting; [2]used ANFIS in seasonal predic-
tion of ground water. In hydrological resources 
studies,[5]used adaptive neuro-fuzzy inference 
system for discharge modeling. [3]applied soft 
computing techniques in prediction of total bed 
material load in tropical rivers;[7]forecast the 
river flows using climatic forcing 2003.Also,
[10] used neuro-fuzzy modeling and forecasting 
in water resources.

In this study, we investigate the capability of 

ANFIS for modeling the river flow forecast.Two
techniques were proposed, first we used pre-
cipitation data in ANFIS input layer to forecast 
monthly mean river flow for river Nile; adding
the zonal wind area mean over a specific area in
the ANFIS input layer the second model were 
built by using, two sets of data, training and 
checking. Many statistical parameters were used 
to assess the models. 

2. Data Description

A variety of precipitation data sets were used 
in this study over three different areas: area one 
(A1) 00-5N, 30-35 E, area2 (A2) 7.5-12.5N, 
37.5-41.5E and area3(A3) 00-25N, 25-40E; the 
best correlation was found between the A3 pre-
cipitation data and the flow table 1. The rainfall
is over land the data source is IPCC (Intergov-
ernmental Panel of Climate Change Data Distri-
bution Center) CRU Ts3 data [14]. The data is 
distributed over land at a resolution 0.5o lat × 
0.5o long for one hundred and two years data 
extended from January 1901 to December 2002 
were used in this study. 

The river flow data is the flow at Aswan, from
August 1871 to July 2002 in billion cubic meters. 
These data are kindly given from the Ministry of 
Irrigation and Water Resources of the Arab Re-
public of Egypt (ARE). 

The NCEP/NCAR Reanalysis project is us-

Al Azhar Buletin of Science Vol.(25) No.2, Decmber, 7-12, 2014,.
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ing a state-of-the-art analysis/forecast system to 
perform data assimilation using past data from 
1948 to 2002. A subset of this data has been pro-
cessed to create monthly means of a subset of the 
original data. There are also files containing data
from variables derived from the reanalysis and 
some other statistics. 

These are calculated by averaging the 4 times 
daily data into monthly means. In some cases, 
the units were changed from the original NCEP 
data. Means are generally from 1948-2002 
though some variables are available for a sub-
set of that period.The variable used is the zonal 
wind m/s.NCEP/NCAR Reanalysis Monthly 
Means for the zonal wind over the area 00o-30o 
N, -60o-70o E fig.1.

3. METHOD

As system complexity increases, reliable 
fuzzy rules and membership functions used to 
describe the system behavior are difficult to de-
termine. Use of ANFIS has been published in 
several journals for various forecasting appli-
cations to overcome these difficulties. Neuro-
adaptive learning techniques provide a method 
to integrate information from a data set (learning 
process), in order to compute the membership 
function parameters that best allow the associ-
ated fuzzy inference system to track the given 
input/ output data [13]. Back propagation is used 
to modify the initially chosen membership func-
tions and the least mean square algorithm deter-
mines the coefficients of the linear output func-
tions [20]. A neural network which can perform 
pattern matching task has a large number of high-
ly interconnected processing elements (Nodes). 

These elements demonstrate the ability to learn 
and generalize from training patterns. Distrib-
uted representation and strong learning capabili-
ties are the major features of neural network. On 
the other hand, decisions using fuzzy logic sys-
tems are based on inputs in the form of linguistic 
variables. These linguistic variables are derived 
from membership functions which are formulas 
used to determine the fuzzy set to which a value 
belongs and the degree of membership in that 
set. The variables are then matched with the spe-
cific linguistic IF-THEN rules and the response
of each rule is obtained through fuzzy implica-
tion. To perform compositional rule of inference, 
the response of each rule is weighted according 
to the values or degree of membership of its in-
puts and the centroid of response is calculated 
to generate the appropriate output. Neural net-
work has the shortcoming of implicit knowledge 
representation. However, fuzzy logic systems 
are subjective and heuristic. These drawbacks 
of neural network and fuzzy logic systems are 
overcome by the integration between the neural 
network technology and the fuzzy logic systems; 
so the ANFIS could be viewed as a fuzzy sys-
tem, a neural network or fuzzy neural network. 
The specific advantages of ANFIS over the two
parts of this hybrid system are:

i.  ANFIS has the ability to classify data 
and find patterns.

ii. ANFIS develops a fuzzy expert system 
that is more transparent to the user and also less 
likely to produce memorization errors than a 
neural network.

Furthermore, ANFIS keeps the advantages 

Figure 2: ANFIS structure.Figure 1: Zonal wind at 150 hPa (Contour) and 
its correlation coefficient (Shaded) with the
flood at Aswan.
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of a fuzzy expert system, while removing (or at 
least reducing) the need for an expert.

ANFIS [20]implements Takagi-Sugeno fuzzy 
rules in five layers. For simplicity, it is assumed
that the fuzzy inference system under consider-
ation has two inputs x and y and one output z as 
shown in Figure 2.

For a zero-order Sugeno fuzzy model, a com-
mon rule set with two fuzzy if-then rules is the 
following:

Rule 1: If x is A1 and y is B1, Then f1=r1

Rule 2: If x is A2 and y is B2, Then f2 = r2

Here the output of the ith node in layer n is 
denoted as On,i:

i. The first layer represents fuzzy member-
ship functions.

Every node i in this layer is an adaptive node 
with a node function:

O1,i=μAi(x)                          for i=1,2,3 or

O1,i =μBi-3(y)                        for i=4,5,6 (4)

Where x (or y) is the input to node i and Ai 
(orBi) is a linguistic label associated with this 
node. In other words, O1,Iis the membership 
grade of a fuzzy set A1, A2 and A3 (or B1,B2 and 
B3) and it specifies the degree to which the given
input x (or y) satisfies the quantifier A (or B).
Here the membership function for A (or B) is 
triangular membership.

ii. The second and the third layers contain 
nodes that form the antecedent parts in each 
rule. Every node in the layer two is a fixed node
whose output is the product of all the incoming 
signals:

O2,i= wi= μAi(x) μBi (y)                  i=1,2,3

Each node output represents the firing strength
of a rule. In layer three every node i in this layer 
is an adaptive node with a node function:

O3,i = wi fi = wiri                                  
 i=1,2,3

Where i is the parameter set of this node. Pa-
rameters in this layer are referred to as conse-
quent parameters and w is the base-width. 

iii. The fourth layer calculates the first-or-
der Takagi- Sugeno rules for each fuzzy rule.

iv.  The fifth layer– the output layer, calcu-
lates the weighted global output of the system.

Where the global output and w is the 
base-width [17].

4. RESULTS AND DISCUSSION

Two models were built depend on our data 
set; first we divided the data into three sets one
for training and one for testing and the last one 
for checking the models. Normalization to the 
data vector to be between 0 and 1 because of the 
parameters used have different scales and units, 
by using the following formula:

In the first model only one input parameter
were used which is the precipitation and one out-
put to the model which is flood. The process of
edit the ANFIS by aid of MATLAB fuzzy tool-
box by loading training and checking data sets 
then generate FIS assign three triangular mem-
bership functions to the input parameter fig. 3 .

The triangular MFs:

Where a and bare the premise parameters that 
characterize the shapes of the input MFs.

After built the model and get the flood calcu-

Table 1: The correlation coefficient between precipi-
tation and Nile river flow at Aswan for three
different areas, area 1 (00-5N, 30-35E), area 
2 (7.5-12.5N, 37.5-41.5), area 3 (00-25N, 25-
40E).  

Time 
delayed Area 1 Area 2 Area 3

One month 0. 41 0.83 0.8

Two month 0.39 0.71 0.74

Three 
month 0.43 0.38 0.53

Four 
month 0.44 0.12 0.30
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lation we tested the model by calculating the root 
mean square Fig.4 error, bias, correlation coef-
ficient and absolute error table 2. Another model
we built using two inputs: precipitation and wind 
also examine the model by the same manner we 
found that when wind is added as input the error 
generally reduced Fig.5. The models were used 
to forecast the river flow then the results were
tested against the actual data Fig.6 and Fig.7.

Without 

Wind

(model1)

With Wind

 (model2 )

Correlation

bias

Mean Absolute 

Error

Root Mean Square 

Error

0.88 0.95

00 00

0.35 0.23

0.50 0.31

Table 2: Statistical parameters for model 1 and 
model2 

Figure 3: Triangular membership function.

Figure 4: Error when precipitation only used as input.
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Figure 7: Actual and forecast data of model 2.

Figure 6: Actual and forecast data of model 1.

Figure 5: Error when precipitation and zonal wind used as inputs.
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Conclusion

Results agree with observations very well. 
Not only precipitation but also many meteo-
rological parameters may used to improve the 
flood prediction like zonal wind. In this study, an
adaptive neuro-fuzzy inference system is used to 
build two models to forecast flood flow. Even
though FIS models trained usually have very 
good forecasting ability, their performance is 
not ideal when applying to predict variable like 
flood, which has chaotic behavior. This raises
the possibility that fuzzy logic models could be 
further improved so they should not only be able 
to represent frequently occurring relationship 
but also be able to update itself like neural net-
works in learning possibility; so using ANFIS is 
very ideal in our case. The needs to background 
knowledge that will allow model to reinterpret 
and/or combine concepts in the data into new 
concepts that can lead to more accurate and/or 
simpler patterns. That is the direction for the 
soft-computing study which applied in our mod-
els and approved very good performance. 
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