The possible role of curcumin-chitosan nanocomposite in reducing the impairment effect of carbon tetrachloride on the testis tissue in liver fibrosis model

Document Type : Original Article

Authors

1 Zoology Department, Faculty of Science (Girls branch), Al-Azhar University, Cairo, Egypt.

2 National Center for Radiation Research and Technology, Egyptian Atomic Authority 3 ahmed elzomor - nacer city

Abstract

The goal of the study is to examine the action of Curcumin-Chitosan (Cur-Chito) nanocomposite supplementation against Carbon tetrachloride toxicity (liver fibrosis model) induced testis impairment. Four groups of 60 mice were under investigation; normal control, Carbon tetrachloride, prevention, and treatment group. Mice were IP injected with Carbon tetrachloride (0.5 ml/kg body weight) 3 times /week x4 weeks to induce liver fibrosis injury. While mice were orally administrated Cur-Chito nanocomposite (100ml/k.g. body weight) 5 times/week x 4 weeks as a style of prevention and treatment. The physiological and biochemical analysis, testis and body weights, semen concentration, were all recorded. The treatment with Carbon tetrachloride showed extensive collagen fibers in and around the portal areas in the liver tissue, atrophy of the seminiferous tubules, disrupted basement membrane, decreased sperm count, decreased testis weight, and body weight in the male reproductive system. Improvement in the histological examination (liver and testis tissues), sperm count, and oxidative status in the Cur-Chito nanocomposite administrated groups in comparison to the Carbon tetrachloride administrated groups. In conclusion (Cur-Chito) nanocomposite can prevent and treat testicular complications of liver and testis tissues in Carbon tetrachloride treated mice.

Keywords

Main Subjects


[1]    Ganie S, Haq E, Hamid A, Qurishi Y, Mahmood Z, Zargar B, Zargar M. Carbon tetrachloride-induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum. BMC Complementary and Alternative Medicine, 2011; 11(1):1-10. ‏ 
[2]    Khaki A, Ouladsahebmadarek E, Javadi L, Farzadi L, Fathiazad F, Nouri M. Anti-oxidative effects of citro flavonoids on spermatogenesis in rat. African Journal of Pharmacy and Pharmacology, 2011; 5(6): 721-725. ‏
[3]    Al-Olayan E, El-Khadragy M, Aref A, Othman M, Kassab R, Abdel Moneim A. The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression. Oxidative Medicine and Cellular Longevity, 2014; 2(1):12–7.
[4]    Abouzied, M.; Eltahir, H.; Taye, A. and Abdelrahman, M. (2016): Experimental evidence for the therapeutic potential of tempol in the treatment of the acute liver injury. Molecular and Cellular Biochemistry, 411(1-2): 107-115.‏
[5]    Devi R, Boruah D, Sharma D, Kotoky, J. Leaf extract of Clerodendron colebrookianum inhibits intrinsic hypercholesterolemia and extrinsic lipid peroxidation. International Journal of PharmTech Research, 2011; 3(2): 960-967. ‏
[6]    El‐Demerdash F, Jebur A, Nasr H, Hamid H. Modulatory effect of Turnera diffusa against testicular toxicity induced by fenitrothion and/or hexavalent chromium in rats. Environmental Toxicology, 2019; 34(3):330-339. ‏
[7]    Hfaiedh M, Brahmi D, Zourgui M, Zourgui L. Phytochemical analysis and nephroprotective effect of cactus (Opuntia ficus-indica) cladodes on sodium dichromate-induced kidney injury in rats. Applied Physiology, Nutrition, and Metabolism, 2019; 44(3):239-247. ‏
[8]    Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of Traditional and Complementary Medicine, 2017; 7(2): 205-233.
[9]    Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 2017; 57(13): 2889-2895.
[10] El-Maddawy Z, El-Sayed Y. Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environmental science and pollution research, 2018; 25(4), 3468-3479.
[11] Cao L, Zhi D, Han J, Kumar- Sah S, Xie Y. Combinational effect of curcumin and metformin against gentamicin-induced nephrotoxicity: involvement of antioxidative, anti-inflammatory and anti-apoptotic pathway. Journal Food Biochemistry, 2019; 43:1-9.
[12] Aslanturk A Uzunhisarcikli M. Protective potential of curcumin or taurine on nephrotoxicity caused by bisphenol A. Environmental Science and Pollution Research, 2020; 27(19): 23994-24003. ‏
[13] Zhang J, Tang L, Li G, Wang J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Renal Failure, 2018; 40(1): 680-686. ‏
[14] Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver, and kidney. Biomedicine and Pharmacotherapy,  2017; 87:223-229. ‏
[15] Belhan S, Yıldırım S, Huyut Z, Özdek U, Oto G, Algül S. Effects of curcumin on sperm quality, lipid profile, antioxidant activity and histopathological changes in streptozotocin‐induced diabetes in rats. Andrologia, 2020; 52(6): 13584-13594.
[16] Tomeh M, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 2019; 20(5):1033-1043.‏
[17] Pan M, Huang T, Lin J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug metabolism and disposition, 1999; 27(4), 486-494. 
[18] Anand P, Kunnumakkara A, Newman R, Aggarwal B. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 2007; 4(6):807-818.‏
[19] Dei Cas M, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients, 2019; 11(9):2147-2157. ‏
[20] Das R, Kasoju N, Bora U Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2010; 6(1):153-160. ‏
[21] Gera M, Sharma N, Ghosh M, Huynh D, Lee S, Min T, Jeong D. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget, 2017; 8(39): 66680-66690. ‏
[22] Hadidi M, Pouramin S, Adinepour F, Haghani S, Jafari S. Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydrate polymers, 2020; 236:116075-116085.
[23] Kravanja G, Primožič M, Knez, Ž, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules, 2019; 24(10): 1960-1970. ‏
[24] Bai K, Hong B, He J, Huang W. Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin a-induced liver injury in mice. Nutrients, 2020; 12(3):857-867. ‏
[25] Darwesh O, Sultan Y, Seif M,  Marrez D. Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicology Reports, 2018; 5: 348-356.
[26] Elchinger P, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C. Antioxidant activities of Peptoid-grafted chitosan films. Applied Biochemistry and Biotechnology, 2017; 181(1): 283-293. ‏
[27] Ivanova D, Yaneva Z. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. BioResearch open access, 2020; 9(1): 64-72.‏
[28] Chang S, Wu C, Tsai G. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate polymers, 2018;  181:1026-1032.‏
[29] Lee D, Shirley S, Lockey R, Mohapatra S. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respiratory Research, 2006; 7(1):1-10. ‏
[30] Dragostin O, Tatia R, Samal S, Oancea A, Zamfir A, Dragostin I, Zamfir C. Designing of Chitosan Derivatives Nanoparticles with Antiangiogenic Effect for Cancer Therapy. Nanomaterials, 2020; 10(4): 698-702.
[31] Haytham EL S A EL S, Lotfy EL S M, Tamer M Abo E, Rania A G. Effect of Carbon Tetrachloride (CCL4) on the liver in Adult Albino Rats: Histological study. The Egyptian Journal of Hospital Medicine, 2019; 76 (6): 4254-4261
[32] Mirza A M, Sharafaldin Al-M, Majid P, Mahdi F, Kazem A, Hajar R, Zuhair M H, Mahdi K, Reza M. 2014 Curcumin-loaded Chitosan Tripolyphosphate Nanoparticles as a safe, natural, and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotech. 2014;12(3): e1012
[33] Suryani M, Ismail H. Preparation of curcumin nanoparticles and cellular uptake study on HeLa cells. In International Conference on Latest Trends in Food, Biological & Ecological Science Proceeding, 2015; 13-17. ‏
[34] Duse L, Baghdan E, Pinnapireddy S, Engelhardt K, Jedelská J, Schaefer J, Bakowsky U. Preparation and characterization of curcumin-loaded chitosan nanoparticles for photodynamic therapy. Physica status solidi, 2018; 215(15): 1700709-1700719. ‏
[35] Ali I, Ibrahim M. Malathion induced testicular toxicity and oxidative damage in male mice: The protective effect of curcumin. Egyptian Journal of Forensic Science, 2018; 8 (70):13-13.
[36]  Mohammed E, Nadia M, El-Hussieny E, Eman E, Hassan M, Zoheiry M. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Archives of Medical Science, 2021;17(1):218-229.
[37] Pant N, Srivastava S. Testicular and spermatotoxic effects of quinalphos in rats. Journal of Applied Toxicology: An International Journal, 2003; 23(4): 271-274.‏.
[38] Hashem A. Defensive impact of propolis against Carbon tetrachloride actuated rats’ testicular damage. Journal of Advanced Veterinary and Animal Research, 2021 8(1): 70-77. ‏
[39] Heger, M, van Golen R, Broekgaarden M, Michel M. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological Reviews, 2014; 66(1): 222-307.
[40] Yang D, Kim H, Park K, Kim J, Chun H. Preparation of poly-l-lysine-based nanoparticles with pH-sensitive release of curcumin for targeted imaging and therapy of liver cancer in vitro and in vivo. Drug Delivery, 2018; 25(1): 950-960. ‏
[41] Lammers T, Hennink W, Storm G. Tumour-targeted nanomedicines: principles and practice. British journal of cancer, 2008; 99(3): 392-397. ‏
[42] Iwai M, Morikawa T, Muramatsu A, Tanaka S, Mori T, Harada Y, Ishii M. Biological significance of AFP expression in liver injury induced by Carbon tetrachloride. Acta Histochemica et Cytochemica, 2000; 33(1): 17-22. ‏
[43] Oliveira H, Spanò M, Guevara M, Santos T, Santos C. de Lourdes Pereira M. Evaluation of in vivo reproductive toxicity of potassium chromate in male mice. Experimental and Toxicologic Pathology, 2010; 62(4): 391-404. ‏
[44] Fidan A, Dündar Y. The effects of Yucca schidigera and Quillaja saponaria on DNA damage, protein oxidation, lipid peroxidation, and some biochemical parameters in streptozotocin-induced diabetic rats. Journal of Diabetes and its Complications, 2008; 22(5), 348-356.
[45] Qian Z, Jung W, Byun H, Kim S. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource technology, 2008; 99(9): 3365-3371.‏
[46] Maneesh M, Jayalekshmi H Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction. Indian Journal of Clinical Biochemistry, 2006; 21(2): 80-89.‏
[47] Grigorov B. Reactive oxygen species and their relation to carcinogenesis. Trakia Journal of Sciences, 2012; 10(3):83–92.
[48] Yadav A, Flora S, Kushwaha P. Nanocurcumin prevents oxidative stress induced following arsenic and fluoride co-exposure in rats. Def Life Sciences Journal, 2016; 1(1): 69-77. ‏
[49] Elmi T, Esboei B, Sadeghi F, Zamani Z, Didehdar M, Fakhar M, Tabatabaie F. In Vitro Antiprotozoal Effects of Nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasitologica,  2021, 66(1): 39-52. ‏
[50] El-Rahman S, Al-Jameel S. Protection of curcumin and curcumin nanoparticles against cisplatin-induced nephrotoxicity in male rats. Sch. Acad. J. Biosci, 2014; 2: 214-223. ‏
[51] Ansar S, Farhat S, Albati A, Abudawood M, Hamed S. Effect of curcumin and curcumin nanoparticles against lead-induced nephrotoxicity. Biomedical Research 2019; 30(1):938-970.
[52] Abdel-Wahhab M, Aljawish A,  El-Nekeety A, Abdel-Aziem S,  Hassan N S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food and Chemical Toxicology, 2017; 99: 209-221.‏
[53] Ahmed-Farid O, Nasr M, Ahmed R, Bakeer R. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content. Journal of Biomedical Science, 2017; 24(1): 1-14.
[54] Sudjarwo S, Anwar C, Wardani G, Eraiko K. Antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat. Asian Pacific Journal of Reproduction, 2019; 8(1):13-23.‏