• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Al-Azhar Bulletin of Science
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 32 (2021)
Issue Issue 2-D
Issue Issue 2-C
Issue Issue 2-B
Issue Issue 2-A
Issue Issue 1-C
Issue Issue 1-B
Issue Issue 1-A
Volume Volume 31 (2020)
Volume Volume 30 (2019)
Volume Volume 29 (2018)
Volume Volume 28 (2017)
Volume Volume 27 (2016)
Volume Volume 26 (2015)
Volume Volume 25 (2014)
Volume Volume 24 (2013)
Volume Volume 23 (2012)
Volume Volume 22 (2011)
Volume Volume 21 (2010)
Volume Volume 20 (2009)
Volume Volume 19 (2008)
Volume Volume 18 (2007)
Volume Volume 17 (2006)
Volume Volume 16 (2005)
Hafez, M., Abu El-Leil, I., Soliman, N., Abu Bakr, M. (2021). New Fluorite Index Using ASTER Data of Gabal Abu Diyab area, Central Eastern Desert, Egypt. Al-Azhar Bulletin of Science, 32(Issue 2-D), 13-21. doi: 10.21608/absb.2021.94705.1136
Mahmoud Hafez; Ibrahim Abu El-Leil; Nehal Soliman; Mostafa Abu Bakr. "New Fluorite Index Using ASTER Data of Gabal Abu Diyab area, Central Eastern Desert, Egypt". Al-Azhar Bulletin of Science, 32, Issue 2-D, 2021, 13-21. doi: 10.21608/absb.2021.94705.1136
Hafez, M., Abu El-Leil, I., Soliman, N., Abu Bakr, M. (2021). 'New Fluorite Index Using ASTER Data of Gabal Abu Diyab area, Central Eastern Desert, Egypt', Al-Azhar Bulletin of Science, 32(Issue 2-D), pp. 13-21. doi: 10.21608/absb.2021.94705.1136
Hafez, M., Abu El-Leil, I., Soliman, N., Abu Bakr, M. New Fluorite Index Using ASTER Data of Gabal Abu Diyab area, Central Eastern Desert, Egypt. Al-Azhar Bulletin of Science, 2021; 32(Issue 2-D): 13-21. doi: 10.21608/absb.2021.94705.1136

New Fluorite Index Using ASTER Data of Gabal Abu Diyab area, Central Eastern Desert, Egypt

Article 4, Volume 32, Issue 2-D, December 2021, Page 13-21  XML PDF (2.12 MB)
Document Type: Original Article
DOI: 10.21608/absb.2021.94705.1136
Authors
Mahmoud Hafez email 1; Ibrahim Abu El-Leil1; Nehal Soliman2; Mostafa Abu Bakr1
1Geology Department, Faculty of Sciences, Al-Azhar University, Nasr City, Cairo, Egypt.
2Geology Department, National Authority for Remote Sensing and Space Sciences, Cairo, Egypt.
Abstract
Remote sensing represents a significant function in the exploration of minerals. Extraction and identification of mineral occurrences in semi-arid to arid regions are some of the remote sensing confirmed uses. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images have been combined with band ratio processing technique for detecting the fluorite mineral occurrences in the area around Gabal Abu Diyab, Central Eastern Desert, Egypt.  The proposed band ratio derived from ASTER images Spectra [(b8/b6) * (b5/b3)] can be considered to represent the new Fluorite Index (FI). The USGS Spectral libraries are used to extract the new index and validated it by using the field study. According to the given new Fluorite Index (FI) combined with the field observations, two occurrences of fluorite mineralization at Gabal Homrit Waggat and Gabal Ineigi have been identified. This study provides the proposed FI as a beneficial tool for fluorite exploration that could be applicable along with Arabian Nubian Shield and similar arid and semi-arid environments. 
Keywords
ASTER; Band Ratio; Fluorite Index; FI; Gabal Abu Diyab
Main Subjects
Geology
References
[1] Agar R. Geoscan Airborne Multi-Spectral Scanners as Exploration Tools for Western Australian Diamond and Gold Deposits. Exploration Geophysics. 1994;25(3):171-172.

[2] Sultan M, Arvidson R, Sturchio N. Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology. 1986;14(12):995.

[3] Oppenheimer C. SABINS, F. F. 1997. Remote Sensing. Principles and Interpretation, 3rd ed. xiii + 494 pp. New York: W. H. Freeman & Co. Price £32.95 (hard covers). ISBN 0 7167 2442 1. Geological Magazine. 1998;135(1):143-158.

[4] Sabins F. Remote sensing for mineral exploration. Ore Geology Reviews. 1999;14(3-4):157-183.

 [5] Abdelsalam M, Stern R, Berhane W. Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea. Journal of African Earth Sciences. 2000;30(4):903-916.

[6] Ramadan T, Abdelsalam M, Stern R, Mapping gold-bearing massive sulfide deposits in the Neoproterozoic Allaqi suture, SE Egypt with Landsat TM and SIR-C/X-SAR images. Journal of Photogrammetric Engineering and Remote Sensing. 2001;67(2): 491–497.

[7] Kusky T, Ramadan T. Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. Journal of African Earth Sciences. 2002;35(1):107-121.

[8] LIU F, WU X, SUN H, GUO Y. Alteration Information Extraction by Applying Synthesis Processing Techniques to Landsat ETM+ Data: Case Study of Zhaoyuan Gold Mines, Shandong Province, China. Journal of China University of Geosciences. 2007;18(1):72-76.

[9] Crósta A, Moore M. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. 9th Thematic Conference on Remote Sensing for Exploration Geology, Environmental Research Institute of Michigan, Ann Arbor. 1989;1173–1187.

[10] Loughlin W. Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing. 1991;57(3), 1163–1169.

[11] Rokos D, Argialas D, Mavrantza R, Seymour K, Vamvoukakis C, Kouli M, Lamera S, Paraskevas H, Karfakis I, Denes G. Structural mapping and analysis for a preliminary investigation of possible gold mineralization by using remote sensing and geochemical techniques in a GIS environment: study area: island of Lesvos, Aegean Sea, Hellas. Natural Resources Research. 2000; 9(1), 277–293.

[12] Ferrier G, White K, Griffiths G, Bryant R. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing. 2002; 23(2), 341–356.

[13] Crósta A, De Souza Filho C, Azevedo F, Brodie C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing. 2003;24(21):4233-4240.

[14] Ninomiya Y, Fu B, Cudahy T. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment. 2005;99(1-2):127-139.

[15] Gad S, Kusky T. Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences. 2006;44(2):196-202.

[16] Gad S, Kusky T. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research. 2007;11(3):326-335.

[17] Shalaby I, Rossman D, Tabarak D, Emam I. Geologic map of Aswan quadrangle, Egypt. Egyptian Geological Survey and Mining Authority. 1983.   

[18] El-Manharawy M.Geochronological investigations of some basement rocks in the Central Eastern Desert, Egypt, between latitudes 25”-26” N. Ph.D. dissertation, Cairo University, Cairo, Egypt. 1977:220.

 [19] Sabet A, Tsogoev V, Baburin L, Raid A, Zakhari A, Armanius L. Geologic structure and laws of localization of tantalum mineral zonation at the Nuweibi deposit. Ann Geol Surv Egypt VI. 1976; 69(1):119–156.

[20] Salem I, Abdel-Moneum A, Shazly A, El-Shibiny N. Mineralogy and geochemistry of Gabal El-Ineigi Granite and associated fluorite veins, Central Eastern Desert, Egypt: application of fluid inclusions to fluorite genesis. Journal of African Earth Sciences. 2001;32(1):29-45.

[21] Mohamed F, El-Sayed M. Post-orogenic and anorogenic A-type fluorite-bearing granitoids, Eastern Desert, Egypt: Petrogenetic and geotectonic implications. Geochemistry. 2008;68(4):431-450.

[22] Moghazi A. Magma source and evolution of Late Neoproterozoic granitoids in the Gabal El-Urf area, Eastern Desert, Egypt: geochemical and Sr–Nd isotopic constraints. Geological Magazine. 1999;136(3):285-300.

[23] Abd EL Nabi A, Abd El Karim R, Abu El Leil I, Awad G, Babourin L, Bagadaev E, Bessonenko V, El-Badri H, El Kadi M, Gabra S, Khalaf I, Kosa M, Kouznetsov D,  Kouznetsov V, Semyonov V, Spiridenov V, Vitkovsky I, Zalata A, Zhukov M. Geologic map of the basement rocks of Jabal Um Ghayj quadrangle, Egypt. 1989.

[24] Moustafa G, Kabesh M, Abdalla A. Geology of Gebel El-lneigi District. Geological Survey, Cairo, Egypt. 1954; 40(1):39-43.

[25] Moharram O, El-Ramly M, Amer A, Gachechiladze D, Ivanov S. Studies on some mineral deposits of Egypt. Annals Egyptian Geological Survey. 1970: 260.

[26] Heikal M. Petrographical and petrochemical studies of G. El-lneigi granitic rocks. Ph.D. dissertation, Faculty of Science, Cairo University, Egypt. 1973: 176.

[27] Fasfous B, Awad N. Mineralization and petrochemical features of El-lneigi fluorite deposit, Eastern Desert, Egypt. Bulletin National Research Center Egypt. 1985; 10(2):299-313.

[28] Yonan A. Mineralogical, petrochemical and geochemical studies on granites hosting fluorite mineralization in the Eastern Desert of Egypt. Ph.D. dissertation, Ain Shams University, Cairo, Egypt. 1990:246.

[29] El-Shibiny N. Petrological and geochemical studies on the mineralization in selected granitic plutons in the Idfu-Mersa Alam District, Eastern Desert, Egypt. Ph.D. dissertation, Tanta University, Tanta, Egypt. 1995:376.

[30] Plimmer F. Land Administration for Sustainable Development20111Ian Williamson, Stig Enemark, Jude Wallace and Abbas Rajabifard. Land Administration for Sustainable Development. Redlands, CA: ESRI Press Academic, ISBN: 978‐1‐58948‐041‐4. Property Management. 2011;29(3):324-324.

[31] Young N, Anderson R, Chignell S, Vorster A, Lawrence R, Evangelista P. A survival guide to Landsat preprocessing. Ecology. 2017;98(4):920-932.

[32] Sundaresan S, Fischhoff I, Dushoff J, Rubenstein D. Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager. Oecologia. 2006;151(1):140-149.

[33] Zoheir B, Emam A, Abd El-Wahed M, Soliman N. Gold endowment in the evolution of the Allaqi-Heiani suture, Egypt: A synthesis of geological, structural, and space-borne imagery data. Ore Geology Reviews. 2019; 110:102938.

[34] Cooley T, Anderson G, Felde G, Hoke M, Ratkowski A, Chetwynd J, Gardner J, Adler-Golden S, Matthew M, Berk A, Bernstein L, Acharya P, Miller D, Lewis P. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. IEEE International Geoscience and Remote Sensing Symposium. 2002; 3(1):1414-1418.

[35] Denniss A. T. M. Lillesand, & R. W. Kiefer, 1994. Remote Sensing and Image Interpretation, 3rd ed. xvi + 750 pp. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons. Price £67.00 (hard covers), £19.95 (paperback). ISBN 0 471 30575 8 (pb). Geological Magazine. 1995;132(2):248-249.

[36] Clark R, Swayze G, Wise R, Livo E, Hoefen T, Kokaly R, Sutley S. USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series. 2007; 231.

Statistics
Article View: 248
PDF Download: 90
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.