Peculiarities of u(vi) adsorption from acidic solution using chitin-derived chitosan as a low-priced bio-adsorbent

Document Type : Original Article

Authors

1 Chemistry department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.

2 Chemistry department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

3 Nuclear Materials Authority, P.O. Box 530 El Maadi, Cairo, Egypt

Abstract

 
Chitosan (CS) as an inexpensive bio-adsorbent was set by chitin deacetylation using sodium hydroxide. The prepared bio-adsorbent was distinguished via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersive spectroscopy (EDX), Brunner-Emmett-Teller surface area (BET) analyzer, and Fourier transform infrared spectroscopy (FTIR). Chitosan implemented for U(VI) adsorption, and the studied parameters that are pH, time of contact, initial concentration, and temperature, were determined by batch technique. The maximum uptake of CS adsorbent is 88.0 mg/g at 200 mg/L initial U(VI) concentration, pH 3.5, and 25 °C.  The kinetic information agreed with the pseudo-second-order model, which considered the attendance of chemisorption. The equilibrium of adsorption reaction gained within 50 min, and equilibrium information well satisfaction for Langmuir model confirmed that U(VI) adsorbed at chitosan monolayer coverage area. Also, the chitosan bio-adsorbent was indeed regenerated by 1M H2SO4 and 1/50 S/L ratio for 75 min of contact.  Seven rounds of adsorption-desorption investigations attended to scrutinize the working applicability and renewed application of the bio-adsorbent.

Keywords

Main Subjects


[1] Shamshina JL, Berton P, Rogers RD. Advances in functional chitin materials: a review. ACS Sustain. Chem. Eng. 2019; 7(7):6444–6457. https://doi.org/10.1021/acssuschemeng.8b06372.
[2] Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins, and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012; 87(2):995-1012. https://doi.org/10.1016/j.carbpol.2011.09.063.
[3] Kurita K. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006; 8(3):203. https://doi.org/10. 1007/s10126-005-0097-5.
[4] Zamani A, Jeihanipour A, Edebo L, Niklasson C, Taherzadeh MJ. Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J. Agric. Food Chem. 2008; 56(18):8314–8318. https://doi.org/10.1021/jf801478j.
[5] Dutta PK, Dutta J, Tripathi V. Chitin and chitosan: chemistry, properties, and applications. J. Scientific & Industrial Res. 2004; 63:20-31.
[6] Perumal S, Atchudan R, Yoon DH, Joo J, Cheong IW. Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater. Ind. Eng. Chem. Res. 2019; 58(23):9900-9907. https://doi.org/10. 1021/acs.iecr.9b01298.
[7] Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2015; 2(3):204-226. https://doi.org/ 10.1002/cben .201400025.
[8] Le HQ, Sekiguchi Y, Ardiyanta D, Shimoyama Y. CO2-activated adsorption: a new approach to dye removal by chitosan hydrogel. ACS Omega 2018; 3(10):14103-14110. https://doi.org/ 10.1021/acsomega.8b01825.
[9] Atia B, Gado M, Cheira M. Kinetics of uranium and iron dissolution by sulfuric acid from Abu Zeneima ferruginous siltstone, southwestern Sinai, Egypt. Euro-Mediterr. J. Environ. Integr. 2018;  3:39. https://doi.org/10.1007/s41207-018-0080-y.
[10] Sakr AK, Mohamed SA, Mira HI, Cheira MF. Successive leaching of uranium and rare earth elements from el Sela mineralization. J. Sci. Eng. Res. 2018; 5:95–111. https://jsaer. com/archive/volume-5-issue-9-2018/.
[11] Zakia SA, Rashad MM, Mohamed SA, Elsheikh EM, Mira HE, Abd El Wahab GM. Kinetics of uranium leaching process using sulfuric acid for Wadi Nasib ore, South western Sinai, Egypt. Aswan Univ. J. Environ. Studies 2020;1:171-182. doi: 10.21608/AUJES. 2020. 127584.
[12] Cheira MF. Solvent extraction of uranium and vanadium from carbonate leach solutions of ferruginous siltstone using cetylpyridinium carbonate in kerosene. Chem. Papers 2020; 74:2247–2266. https://doi.org/10.1007/s11696-020-01073-w.
[13] Cheira MF,  El-Didamony AM, Mahmoud KF, Atia BM.  Equilibrium and kinetic characteristics of uranium recovery by the strong base Ambersep 920U Cl resin. IOSR-Appl. Chem. 2014; 7:32-40. doi:10.9790/5736-07533240.
[14] Zidan IH, Cheira MF, Bakry AR, Atia BM. Potentiality of uranium recovery from G. Gattar leach liquor using Duolite ES-467 chelating resin: Kinetic, thermodynamic and isotherm features. Intern. J. Environ. Anal. Chem. 2020; 1-23. https://doi.org/10.1080/03067319. 2020.1748613.
[15] Cheira MF. Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid. European J. Chem. 2015; 6:48‐56. doi:10.5155/eurjchem.6.1.48-56.1143.
[18] Atia AA. Studies on the interaction of mercury II and uranyl II with modified chitosan resins. Hydrometallurgy 2005; 80:13-22. https:// doi.org/10.1016/j.hydromet.2005.03.009.
[19] Wang J, Huo Y, Ai Y. Experimental and theoretical studies of chitosan modified titanium dioxide composites for uranium and europium removal. Cellulose 2020; 27:7765–7777. https://doi.org/10.1007/s10570-020-03337-w.
[20] Christou C, Philippou K, Krasia-Christoforou T, Pashalidis I. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohydrate Polymers 2019; 219:298–305. https://doi.org/10.1016/ j.carbpol. 2019.05.041.
[21] Gado MA, Atia BM, Cheira MF, Abdou AA. Thorium ions adsorption from aqueous solution by amino naphthol sulphonate coupled chitosan. Intern. J. Environ. Anal. Chem. 2019; 1-18. https://doi.org/10.1080/03067319.2019.1683552.
[22] Sakaguchi T, Horikoshi T, Nakajima A. Adsorption of uranium by chitin phosphate and chitosan phosphate. Agri. Biol. Chem. 1981: 45(10):2191-2195. doi: 10.1080/00021369. 1981.10864862.
[23] Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005; 30:38-70. https://doi.org/ 10.1016/j.progpolymsci.2004.11.002.
[24] Fan L, Luo C, Sun M, Li X, Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B: Biointerfaces 2013; 103:523-529. https://doi.org/ 10.1016/j. colsurfb.2012.11.006.
[25] Motawie AM, Mahmoud KF, El-Sawy AA, Kamal HM, Hefni H, Ibrahiem HA. Preparation of chitosan from the shrimp shells and its application for pre-concentration of uranium after cross-linking with epichlorohydrin. Egy. J. Petroleum 2014; 23(2):221-228. https:// doi.org/ 10.1016/j.ejpe.2014.05.009.
[26] Kang S, Lee J, Kim T, Lee H, Kim J, Kim C, Ko C, Yong-Beom K, Nam-Gi K. Removal of uranium in water system by chitosan beads. Theor. Appl. Chem. Eng. 2003; 9(2):2266.
[27] Yi Z, Li J. Removal of uranium(VI) from aqueous solution by dry chitosan powder. Adv. Mat. Res. 2012; 366:434-437. https://doi.org/ 10.4028/www.scientific.net/AMR.366.434.
[28] Frantz TS, Silveira N Jr, Quadro MS, ndreazza R, Barcelos AA, Cadaval TRS Jr, Pinto LAA. Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ. Sci. Pollut. Res. Int. 2017; 24(6):5908–5917. https://doi.org/10.1007/s11356-016-8344-z.
[29] Sivakami MS, Gomathi T, Venkatesan J, Jeong HS, Kim SK, Sudha PN. Preparation and characterization of nanochitosan for treatment wastewater. Int. J. Biol. Macromol. 2013; 57:204-212. https://doi.org/ 10.1016/j. ijbiomac.2013.03.005.
[30] Nthunya LN, Masheane ML, Malinga SP, Nxumalo EN, Mhlanga SD. Environmentally benign chitosan-based nanofibers for potential use in water treatment. Cogent Chem. 2017; 3(1):1357865. https://doi.org/10.1080/ 23312009. 2017.1357865.
[31] Antonino RS, Fook BR, Lima VA, Rached RÍ, Lima EP, Lima RJ, Covas CA, Fook MV. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei boone). Mar. Drugs 2017; 15:141. doi:10.3390/md15050141.
[32] Mohammed MH, Williams PA, Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids 2013; 31: 166-171. https://doi.org/10.1016/j.foodhyd.2012.10.021.
[33] Marczenko Z, Balcerzak M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. Elsevier Science B.V., Amesterdam, Netherland. 2000; 446-455.
[34] Liu L, Yang W, Gu D, Zhao X, Pan Q. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Front. Chem. 2019; 7:607. doi:10.3389/fchem. 2019. 00607.
[35] Jeon C, Höll WH. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res. 2003; 37:4770-4780. https://doi.org/10.1016/S0043-1354(03)00431-7.
[36] Monier M, Elsayed NH. Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J. Colloid Inter. Sci. 2014; 423: 113-122. https://doi.org/10.1016/ j.jcis.2014. 02.015.
[37] Sun Z, Chen D, Chen B, Kong L, Su M. Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Coll. Surf. A: Physicochem. Eng. Aspects 2018; 547:141-147. https://doi.org/10.1016/j.colsurfa.2018.02.043.
[38] Cheira MF. Synthesis of aminophosphonate-functionalised ZnO/polystyrene-butadiene nanocomposite and its characteristics for uranium adsorption from phosphoric acid. Intern. J. Environ. Anal. Chem.  2019; 1-25. https://doi.org/10.1080/03067319.2019.1686493.
[39] Cheira MF, Kouraim, MN, Zidan IH, Mohamed WS, Hassanein TF. Adsorption of U(VI) from sulfate solution using montmorillonite/ polyamide and nano-titanium oxide/polyamide nanocomposites. J. Environ. Chem. Eng. 2020; 8: 104427. https://doi.org/10.1016/j. jece.2020. 104427.
[40] Wang G, Liu J, Wang X, Xie Z, Deng N. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J. Hazard. Mat. 2009; 168:1053–1058. https://doi.org/ 10.1016/j.jhazmat.2009.02.157
[41] Abdien HG, Cheira MF, Abd-Elraheem MA, Saef El-Naser TA, Zidan IH. Removal of uranium from acidic solution using activated carbon impregnated with tributyl phosphate. Biol. Chem. Res. S.S. Pub. 2016; 2016:313-340.http://www.ss-pub.org/wp-content/uploads/ 2016 /11/BCR 2016081701. pdf.
[42] Cheira MF, Rashed MN, Mohamed AE, Hussein GM, Awadallah MA. Removal of some harmful metal ions from wet-process phosphoric acid using murexide-reinforced activated bentonite. Mat. Today Chem. 2019; 14: 100176. https://doi.org/10.1016/j.mtchem. 2019.06.002.
[43] Atia BM, Khawassek YM, Hussein GM, Gado MA, El-Sheify MA, Cheira MF. One-pot synthesis of pyridine dicarboxamide derivative and its application for uranium separation from acidic medium. J. Environ. Chem. Eng. 2021; 9:105726.https://doi.org/10.1016/j.jece.2021.105726.
[44] Cheira MF, Rashed MN, Mohamed AE, Zidan IH, Awadallah MA. The performance of Alizarin impregnated bentonite for the displacement of some heavy metals ions from the wet phosphoric acid. Sep. Sci. Tech. 2020; 55: 3072-3088. https://doi.org/10.1080/ 01496395. 2019.1675701.
[45] Sayed AS, Abdelmottaleb M, Cheira MF, Abdel-Aziz G, Gomaa H, Hassanein TF. Date seed as an efficient, eco-friendly, and cost-effective bio-adsorbent for removal of thorium ions from acidic solutions. Aswan Uni. J. Environ. Studies 2020; 1:106-124. doi: 10.21608/aujes.2020.124579.
[46] Kadous A, Didi MA, Villemin D. A new sorbent for uranium extraction:ethylenediamino tris-methylene phosphonic acid grafted on poly styrene resin. J. Radioanal. Nucl. Chem. 2010; 284: 431-438.  https://doi.org/10.1007/s10967-010-0495-7.
[47] Cheira MF. Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution. SN Appl. Sci. 2020; 2:398. https://doi.org/10.1007/s42452-020-2221-6.
[48] Atia BM, Gado MA, Cheira MF, El-Gendy HS, Yousef MA, Hashem MD.Direct synthesis of a chelating carboxamide derivative and its application for thorium extraction from Abu Rusheid ore sample, South Eastern Desert, Egypt. Intern. J. Environ. Anal. Chem.  2021; 1-24. https://doi.org/10.1080/03067319. 2021. 1924161.