Preparation, characterization and antimicrobial activity of chitosan-fatty acid derivatives as a drug delivery system: intercelation and in vitro release of ciprofloxacin

Document Type : Original Article


Al-azhar university-faculty of science-Cairo-Egypt


One of the most exciting areas of research in pharmaceutical sciences is the development of new delivery systems for controlled drug release. The main objective of this research focused on chitosan-fatty acid derivatized matrix for drug delivery. Saturated fatty acids (lauric acid and stearic acid) as well as unsaturated fatty acids (oleic acid and linoleic acid) are involved in this study which enhance the chemical properties of chitosan in drug delivery and enhance the permeability of ciprofloxacin drug compounds. The structure of the synthesized derivatives was characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Intercalation and in vitro release of ciprofloxacin was investigated by UV spectrophotometrically. All the prepared chitosan derivatives showed a potent antimicrobial activity. It was observed that the release study of drug was maximum at the beginning and then released slowly. The initial burst release of drug may be due to the drug which exists on the surface of the film without being trapped efficiently. Chitosan linoleic ciprofloxacin composite (CS-Lin-CF) showed 52% drug release, chitosan stearic ciprofloxacin composite (CS-S-CF) showed 53.2% drug release and chitosan lauric ciprofloxacin composite (CS-L-CF) showed 63.1% drug release, chitosan oleic ciprofloxacin composite (CS-Ol-CF) showed 79.1% drug release at 8 hours. 


Main Subjects

[1] Khan AL, Lie L, Norquist AJ, Hare OD. Intercelation & controlled release of                                          pharmaceutically active compounds for a layered double hydroxide, chem. commun.   2001;22: 2342-2343. Doi: 10.1039/b106465g.
[2] Park JH, Saravanakumar G,Kim K,Kwon IC.Targeted delivery of low        molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev; 2010;31;62(1):28-41 Doi: 10.1016/j.addr.2009.10.003.
[3] Rinaudo M. Chitin and Chitosan: Properties and Applications. Progress in   Polymer Science. 2006;31: 603-632 progpolymsci.2006.06.001
[4]    Agarwal M, Agarwal MK, Shrivastav N, Pandey S, Gaur P. A Simple and Effective Method for Preparation of Chitosan from
        Chitin. Int. J. Life. Sci. Scienti. Res., 2018; 4(2): 1721-1728. DOI:10.21276/ijlssr.2018.4.2.18.
 [5] Wilson B, Samanta MK, Muthu MS, Vinothapooshan G, Design and   evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer's disease, Ther. Deliv.2011; 2 (5) 599–609. DOI: 10.4155/tde.11.21.
[6] Cheba B. Chitosan: Properties, Modifications and Food Nanobiotechnology Procedia Manuf-acturing. 2020; 46:652–658.              
        DOI: 10.1016/j.promfg.2020.03.093
[7] Tian B, Liu Y. Chitosan-based biomaterials: From discovery to food application, Polym Adv Technol.2020;31:2408–2421.
[8] Crini NM, Lichtfouse L, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry Environmental Chemistry Letters. 2019; 17: 1667 –1692.
[9] Kean T, Thanou M.Biodegradation, biodistribution and toxicity of chitosan, Adv. Drug Deliv. Rev. 2010;62 (1) 3–11. Doi: 10.1016/j.addr.2009.09.004.
[10] Feng J, Zhao L, Yu Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages, Biochem. Biophys. Res. Commun. 2004;317 (2) 414–420. Doi: 10.1016/j.bbrc.2004.03.048.
[11] Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B. Chitosan modification and pharmaceutical/biomedical applications, Mar. Drugs. 2010;8(7) 1962–1987. Doi: 10.3390/md8071962.
[12] Sashiwa H, Aiba SI. Chemically Modified Chitin and Chitosan as Biomaterials Prog Polym Sci. 2004; 29:887–908. DOI: 10.1016/j.progpolymsci.2004.04.001
[13] Rane KD, Hoover DG. Production of Chitosan by fungi Food Biotechnol.2009;7: 11–33.
[14] Aranaz I, Harris R, Heras A. Chitosan Amphiphilic Derivatives. Chemistry and Applications Curr Org Chem.2010; 14:308–330. DOI: 10.2174/138527210790231919.
[15] Illum L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharm Res.1998; 15, 1326–1331. 1011929016601.
[16] Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ.Chitosan Chemistry and Pharmaceutical Perspectives, Chem Rev. 2004; 104: 6017–6084. Doi: 10.1021/cr030441b.
[17] Pan˜os I, Acosta N, Heras A. New drug delivery systems based on chitosan Curr Drug Discov Technol. Dec.2008;5(4):333-41.   DOI:10. 2174/ 157016308786733528.
[18] Varshosaz J. The promise of chitosan microspheres in drug delivery systems Expert Opin Drug Deliv; May.2007;4(3):263-73. DOI: 10.1517/17425247.4.3.263.
[19] Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering Biomaterials.1999; 20:( (11)33–1142. DOI: 10.1016/s0142-9612(99)00011-3.
[20] Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of    mucoadhesive properties of chitosan and some other natural polymers Int J Pharm. 1992; 78:43–48.
[21] Yang Y, Tian F, Wang Z, Wang Q, Zeng Y, Chen S. Effect of chitosan molecular weight and deacetylation degree on hemostasis, J Biomed Mater Res B Appl Biomatter. 2008;84B:131–137. Doi: 10.1002/jbm.b.30853.
[22] Minagawa T, Okamura Y, Shigemasa Y, Minami S. Effects of molecular                                      weight and deacetylation degree of chitin/chitosan on wound healing, Carbohydr         Polym.2007;67:640–644. Doi: 10.1016/j.carbpol.2006.07.007
[23] Sudarshan NR, Hoover DG, Knorr D.             Antibacterial action of chitosan Food Biotechnol.1992;6: 257–272. .
[24] Ong SY, Wu J, Moochhala SM, Tan M, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties, Biomaterials. 2008; 29:4323– 4332. Doi: 10.1016/j.biomaterials.2008.07.034.
[25] Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines, pharm Res Oct.1997;14(10):1431-6. Doi: 10.1023/a:1012128907225.
[26] Lee KY. Chitosan and its derivatives for gene delivery, Macromol Res. 2007;15: 195–201.
[27] Aranaz I, Harris R, Heras A. Chitosan Amphiphilic Derivatives. Chemistry and Applications, Current Organic Chemistry. 2010;14: 308-330.
         Doi : 10.2174/138527210790231919
[28] Erbacher P, Zou SM et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res.1998; 15:1332–1339. Doi: 10.1023/a:1011981000671.
[29] Mourya VK, Inamdar NN.Chitosan—Modifications and applications: Opportunities galore, React Funct Polym.2008;68:1013–1051.
[30] Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS), Carbohydr Polym.2005;62:357–368.
[31] Atta AM, Abdel-Azim AA. Effect of crosslinker functionality on swelling and network parameters of copolymeric hydrogels,  Polym Adv Technol.1998;9:340-348.
[32] Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and itsquaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia.2016 ;26 :122–127.
[33] Pawlak A, Mucha M.Thermogravimetric and FTIR studies of chitosan blendsThermochim Acta.2003;396:153-166.
[34] Cui Z, Xiang Y, Si J, Yang M, Zhang Q, Zhang T. Ionic interactions between sulfuric acid and chitosan membranes Carbohydr Polym.2008;73:111- 116. DOI: 10.1016/j.carbpol.2007.11.009 
[35] Goy RC, Britto D, Assis OBG. A Review of the Antimicrobial Activity of Chitosan, Polímeros: Ciência e Tecnologia.2009; 19:241-247.
[36] Kabara JJ. Fatty acids and derivatives as antimicrobial agents: A review. In The Pharmacological Effect of Lipids (JJ Kabara, ed), American Oil Chemists’ Society, Champaign IL. (1978) Doi: 10.1128/AAC.2.1.23.
[37] Lee CK, Uchida T, Kitagawa K, Yagi A, Kim NS, Goto S. Relationship between lipophilicity and skin permeability of various drugs from an  ethanol/water/lauric acid system. Biol. Pharm. Bull.1994;17:1421–1424. DOI: 10.1248/bpb.17.1421.
[38] Kravchenko IA, Golovenko NY, Larionov VB, Aleksandrova AI, Ovcharenko NV Effect of lauric acid on transdermal penetration of phenazepam in vivo. Bull Exp Biol Med 2003; 136:579–81.
[39] Chu-Kung AF, Bozzelli KN, Lockwood NA, Haseman JR, Mayo KH, Tirrell MV. Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjug Chem. 2004; 15:530–5. Doi: 10.1021/bc0341573.
[40] Nam YS, Cho SY, Yang HY, Park KS, Jang JH, Kim YT, Jeong JW, Suh JT, Lee HJ Investigation of mutation distribution in DNA gyrase and topoisomerase IV genes in ciprofloxacin-non-susceptible Enterobacteriac-eae isolated from blood cultures in a tertiary care university hospital in South Korea, 2005–2010: Int J Antimicrob Agents.2013;41:126–129. Doi: 10.1016/j.ijantimicag.2012.10.004.
[41] Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev.2009; 22:664–689.Doi •
[42] Peppas  NA.Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field mature. Adv Drug Delivery Rev. 2013; 65:5–9. Doi: 10.1016/j.addr.2012.09.040.
[43] Peppas NA, Narasimhan B.Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release. 2014; 190:75-81. Doi: 10.1016/j.jconrel.2014.06.041.
[44] Semwal A, Singh R, Dutta PK.Chitosan: A promising substrate for pharmaceuticals. Journal of Chitin and Chitosan Science. 2013; 1:87–102. Doi:10.1166/jcc.2013.1012
[45] Lehr CM, Bouwstra JA, Schacht EH, Junginger HE.In vitro evaluation of  mucoad-hesive properties of chitosan and some other natural polymers. International Journal of Pharmaceutics.1992;78:43–48.
[46] Anuar ST, Ithurayasamy PN, Che L. Exploiting Fatty Acid-Polymer-Based Lauric Acid and Chitosan as Coating Material for Drug Encapsulation Journal of Scientific Research.2016; 24(6): 2116-2122. Doi: 10.5829/idosi.mejsr.2016.24.06.23652