• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Al-Azhar Bulletin of Science
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 32 (2021)
Issue Issue 2-D
Issue Issue 2-C
Issue Issue 2-B
Issue Issue 2-A
Issue Issue 1-C
Issue Issue 1-B
Issue Issue 1-A
Volume Volume 31 (2020)
Volume Volume 30 (2019)
Volume Volume 29 (2018)
Volume Volume 28 (2017)
Volume Volume 27 (2016)
Volume Volume 26 (2015)
Volume Volume 25 (2014)
Volume Volume 24 (2013)
Volume Volume 23 (2012)
Volume Volume 22 (2011)
Volume Volume 21 (2010)
Volume Volume 20 (2009)
Volume Volume 19 (2008)
Volume Volume 18 (2007)
Volume Volume 17 (2006)
Volume Volume 16 (2005)
Gamal, A., Ibrahim, A., El-Zomrawy, A. (2021). ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT. Al-Azhar Bulletin of Science, 32(Issue 1-A), 29-36. doi: 10.21608/absb.2021.68993.1108
Ahmed Gamal; Ahmed Galal Ibrahim; Adham El-Zomrawy. "ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT". Al-Azhar Bulletin of Science, 32, Issue 1-A, 2021, 29-36. doi: 10.21608/absb.2021.68993.1108
Gamal, A., Ibrahim, A., El-Zomrawy, A. (2021). 'ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT', Al-Azhar Bulletin of Science, 32(Issue 1-A), pp. 29-36. doi: 10.21608/absb.2021.68993.1108
Gamal, A., Ibrahim, A., El-Zomrawy, A. ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT. Al-Azhar Bulletin of Science, 2021; 32(Issue 1-A): 29-36. doi: 10.21608/absb.2021.68993.1108

ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT

Article 1, Volume 32, Issue 1-A, June 2021, Page 29-36  XML PDF (918.96 K)
Document Type: Original Article
DOI: 10.21608/absb.2021.68993.1108
Authors
Ahmed Gamal email 1; Ahmed Galal Ibrahimorcid 2; Adham El-Zomrawy3
1Al-Azhar University, Faculty of Science, Department of chemistry, Cairo, Egypt
2Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
3Al-Azhar University, Faculty of Science, Department of Physical Chemistry, Cairo, Egypt.
Abstract
 Sulfide in its form of free hydrogen sulfide is recognized to cause anxiety at its lower level of concentration, but at a higher level, it causes permanent brain damage, fainting, or even death through asphyxiation. In this study, chitosan films were fabricated, and the copper ions were loaded onto them by way of adsorption to be used in the detection of hydrogen sulfide (H2S) gas electrochemically. The results presented an amazing variation in the electrical resistivity and conductivity of the chitosan and copper-loaded chitosan films against time in response to H2S gas adsorption. Also, the results demonstrate a significant increase in the conductivity of the copper-loaded chitosan/H2S film as compared with pure chitosan/H2S. Furthermore, the films were examined after the H2S adsorption process in many ways; resistor-capacitor circuit, electrochemical impedance spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), as well as electron scanning microscopy (SEM). SEM images indicated the successful loading of copper ions onto the chitosan structure. 
Keywords
Chitosan; Adsorption; Electrochemical sensitivity; Hydrogen Sulfide
Main Subjects
Chemistry
References

[1] Shukur MF, Kadir MFZ. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta. 2015;158:152-65 DOI: 10.1016/j.electacta.2015.01.167.

[2] Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, et al. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym. 2017;157:38-47 DOI: 10.1016/j.carbpol.2016.09.026.

[3] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci (Oxford). 2006;31(7):603-32 

DOI: 10.1016/j.progpolymsci.2006.06.001.

[4] Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: A review. Carbohydr Polym. 2004;55(1):77-93 DOI: 10.1016/j.carbpol.2003.08.005.

[5] Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens Actuators, B Chem. 2016;225:348-53

DOI: 10.1016/j.snb.2015.11.073.

[6] Jiang J, Chan A, Ali S, Saha A, Haushalter KJ, Lam WLM, et al. Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote. Sci Rep. 2016;6: 20831 DOI: 10.1038/srep20831.

[7] Potivichayanon S, Pokethitiyook P, Kruatrachue M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 2006;41(3):708-15 DOI: 10.1016/j.procbio.2005.09.006.

[8] Dubinin AV, Demidova TP, Kremenetskii VV, Kokryatskaya NM, Rimskaya-Korsakova MN, Yakushev EV. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques. Oceanology. 2012;52(2):181-90 DOI: 10.1134/S0001437012010080.

[9] Ciesielski W, Zakrzewski R. Iodimetric Titration of Sulfur Compounds in Alkaline Medium. Chem Anal. 2006;51:653-79.

[10] Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077-92 DOI: 10.1021/acsami.5b00161.

[11] Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces. 2014;6(7):5319-26

DOI: 10.1021/am500944a.

[12] Jana S, Mondal A. Fabrication of SnO2/α-Fe2O3, SnO2/α-Fe2O3-PB heterostructure thin films: Enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces. 2014;6(18):15832-40

DOI: 10.1021/am5030879.

[13] Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces. 2014;6(10):7055-62 DOI: 10.1021/am501799w.

[14] Surya SG, Bhanoth S, Majhi SM, More YD, Teja VM, Chappanda KN. A silver nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-based capacitive H2S gas sensor. Crystengcomm. 2019;21(47):7303-12

DOI: 10.1039/c9ce01323g.

[15] Kneer J, Knobelspies S, Bierer B, Wöllenstein J, Palzer S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens Actuators, B Chem. 2016;222:625-31 DOI: 10.1016/j.snb.2015.08.071.

[16] Kneer J, Wöllenstein J, Palzer S. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing. Appl Phys Lett. 2014;105(7) 073509 DOI: 10.1063/1.4893736.

[17] Chen J, Gu J, Zhang R, Mao Y, Tian S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors. 2019;19(3) 605 DOI: 10.3390/s19030605.

18.       Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185-95 DOI: 10.1039/c5an02208h.

[19]      Fraden J. Handbook of modern sensors: Physics, designs, and applications 2016. 1-758 p.

[20]      Dunford S, Grinshpan A, Woods G. Calculating the Time Constant of an RC Circuit. Uudergrad J Math Model. 2010;2(2):1-11 http://dx.doi.org/10.5038/2326-3652.2.2.3.

[21] Ayesh AI, Mohsin MA, Haik MY, Haik Y. Investigations on electrical properties of poly(vinyl alcohol) doped with 1-methyl-3-n-decyl-imidazolium bromide ionic liquid. Curr Appl Phys. 2012;12(4):1223-8

DOI: 10.1016/j.cap.2012.03.004.

[22] Aziz NA, Majid SR, Arof AK. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. J Non Cryst Solids. 2012;358(12-13):1581-90 DOI: 10.1016/j.jnoncrysol.2012.04.019.

 

 

 

 

[1] Shukur MF, Kadir MFZ. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta. 2015;158:152-65 DOI: 10.1016/j.electacta.2015.01.167.

[2] Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, et al. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym. 2017;157:38-47

DOI: 10.1016/j.carbpol.2016.09.026.

[3] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci (Oxford). 2006;31(7):603-32

DOI: 10.1016/j.progpolymsci.2006.06.001.

[4] Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: A review. Carbohydr Polym. 2004;55(1):77-93

DOI: 10.1016/j.carbpol.2003.08.005.

[5] Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens Actuators, B Chem. 2016;225:348-53 DOI: 10.1016/j.snb.2015.11.073.

[6] Jiang J, Chan A, Ali S, Saha A, Haushalter KJ, Lam WLM, et al. Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote. Sci Rep. 2016;6: 20831

DOI: 10.1038/srep20831.

[7] Potivichayanon S, Pokethitiyook P, Kruatrachue M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 2006;41(3):708-15

DOI: 10.1016/j.procbio.2005.09.006.

[8] Dubinin AV, Demidova TP, Kremenetskii VV, Kokryatskaya NM, Rimskaya-Korsakova MN, Yakushev EV. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques. Oceanology. 2012;52(2):181-90

DOI: 10.1134/S0001437012010080.

[9] Ciesielski W, Zakrzewski R. Iodimetric Titration of Sulfur Compounds in Alkaline Medium. Chem Anal. 2006;51:653-79.

[10] Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077-92

DOI: 10.1021/acsami.5b00161.

[11] Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces. 2014;6(7):5319-26

DOI: 10.1021/am500944a.

[12] Jana S, Mondal A. Fabrication of SnO2/α-Fe2O3, SnO2/α-Fe2O3-PB heterostructure thin films: Enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces. 2014;6(18):15832-40

DOI: 10.1021/am5030879.

[13] Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces. 2014;6(10):7055-62

DOI: 10.1021/am501799w.

[14] Surya SG, Bhanoth S, Majhi SM, More YD, Teja VM, Chappanda KN. A silver nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-based capacitive H2S gas sensor. Crystengcomm. 2019;21(47):7303-12

DOI: 10.1039/c9ce01323g.

[15] Kneer J, Knobelspies S, Bierer B, Wöllenstein J, Palzer S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens Actuators, B Chem. 2016;222:625-31

DOI: 10.1016/j.snb.2015.08.071.

[16] Kneer J, Wöllenstein J, Palzer S. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing. Appl Phys Lett. 2014;105(7) 073509

DOI: 10.1063/1.4893736.

[17] Chen J, Gu J, Zhang R, Mao Y, Tian S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors. 2019;19(3) 605

DOI: 10.3390/s19030605.

18.       Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185-95

DOI: 10.1039/c5an02208h.

[19]      Fraden J. Handbook of modern sensors: Physics, designs, and applications 2016. 1-758 p.

[20]      Dunford S, Grinshpan A, Woods G. Calculating the Time Constant of an RC Circuit. Uudergrad J Math Model. 2010;2(2):1-11 http://dx.doi.org/10.5038/2326-3652.2.2.3.

[21] Ayesh AI, Mohsin MA, Haik MY, Haik Y. Investigations on electrical properties of poly(vinyl alcohol) doped with 1-methyl-3-n-decyl-imidazolium bromide ionic liquid. Curr Appl Phys. 2012;12(4):1223-8

DOI: 10.1016/j.cap.2012.03.004.

[22] Aziz NA, Majid SR, Arof AK. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. J Non Cryst Solids. 2012;358(12-13):1581-90

DOI: 10.1016/j.jnoncrysol.2012.04.019.

 

 

 

 

 

 

 

 

 

 

 

Statistics
Article View: 69
PDF Download: 89
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.