ADSORPTION OF COPPER IONS ON CHITOSAN-BASED FILMS FOR DETECTION OF H2S GAS POLLUTANT

Document Type : Original Article

Authors

1 Al-Azhar University, Faculty of Science, Department of chemistry, Cairo, Egypt

2 Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

3 Al-Azhar University, Faculty of Science, Department of Physical Chemistry, Cairo, Egypt.

Abstract

 Sulfide in its form of free hydrogen sulfide is recognized to cause anxiety at its lower level of concentration, but at a higher level, it causes permanent brain damage, fainting, or even death through asphyxiation. In this study, chitosan films were fabricated, and the copper ions were loaded onto them by way of adsorption to be used in the detection of hydrogen sulfide (H2S) gas electrochemically. The results presented an amazing variation in the electrical resistivity and conductivity of the chitosan and copper-loaded chitosan films against time in response to H2S gas adsorption. Also, the results demonstrate a significant increase in the conductivity of the copper-loaded chitosan/H2S film as compared with pure chitosan/H2S. Furthermore, the films were examined after the H2S adsorption process in many ways; resistor-capacitor circuit, electrochemical impedance spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), as well as electron scanning microscopy (SEM). SEM images indicated the successful loading of copper ions onto the chitosan structure. 

Keywords

Main Subjects


[1] Shukur MF, Kadir MFZ. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta. 2015;158:152-65 DOI: 10.1016/j.electacta.2015.01.167.
[2] Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, et al. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym. 2017;157:38-47 DOI: 10.1016/j.carbpol.2016.09.026.
[3] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci (Oxford). 2006;31(7):603-32 
DOI: 10.1016/j.progpolymsci.2006.06.001.
[4] Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: A review. Carbohydr Polym. 2004;55(1):77-93 DOI: 10.1016/j.carbpol.2003.08.005.
[5] Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens Actuators, B Chem. 2016;225:348-53
DOI: 10.1016/j.snb.2015.11.073.
[6] Jiang J, Chan A, Ali S, Saha A, Haushalter KJ, Lam WLM, et al. Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote. Sci Rep. 2016;6: 20831 DOI: 10.1038/srep20831.
[7] Potivichayanon S, Pokethitiyook P, Kruatrachue M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 2006;41(3):708-15 DOI: 10.1016/j.procbio.2005.09.006.
[8] Dubinin AV, Demidova TP, Kremenetskii VV, Kokryatskaya NM, Rimskaya-Korsakova MN, Yakushev EV. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques. Oceanology. 2012;52(2):181-90 DOI: 10.1134/S0001437012010080.
[9] Ciesielski W, Zakrzewski R. Iodimetric Titration of Sulfur Compounds in Alkaline Medium. Chem Anal. 2006;51:653-79.
[10] Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077-92 DOI: 10.1021/acsami.5b00161.
[11] Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces. 2014;6(7):5319-26
DOI: 10.1021/am500944a.
[12] Jana S, Mondal A. Fabrication of SnO2/α-Fe2O3, SnO2/α-Fe2O3-PB heterostructure thin films: Enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces. 2014;6(18):15832-40
DOI: 10.1021/am5030879.
[13] Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces. 2014;6(10):7055-62 DOI: 10.1021/am501799w.
[14] Surya SG, Bhanoth S, Majhi SM, More YD, Teja VM, Chappanda KN. A silver nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-based capacitive H2S gas sensor. Crystengcomm. 2019;21(47):7303-12
DOI: 10.1039/c9ce01323g.
[15] Kneer J, Knobelspies S, Bierer B, Wöllenstein J, Palzer S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens Actuators, B Chem. 2016;222:625-31 DOI: 10.1016/j.snb.2015.08.071.
[16] Kneer J, Wöllenstein J, Palzer S. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing. Appl Phys Lett. 2014;105(7) 073509 DOI: 10.1063/1.4893736.
[17] Chen J, Gu J, Zhang R, Mao Y, Tian S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors. 2019;19(3) 605 DOI: 10.3390/s19030605.
18.       Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185-95 DOI: 10.1039/c5an02208h.
[19]      Fraden J. Handbook of modern sensors: Physics, designs, and applications 2016. 1-758 p.
[20]      Dunford S, Grinshpan A, Woods G. Calculating the Time Constant of an RC Circuit. Uudergrad J Math Model. 2010;2(2):1-11 http://dx.doi.org/10.5038/2326-3652.2.2.3.
[21] Ayesh AI, Mohsin MA, Haik MY, Haik Y. Investigations on electrical properties of poly(vinyl alcohol) doped with 1-methyl-3-n-decyl-imidazolium bromide ionic liquid. Curr Appl Phys. 2012;12(4):1223-8
DOI: 10.1016/j.cap.2012.03.004.
[22] Aziz NA, Majid SR, Arof AK. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. J Non Cryst Solids. 2012;358(12-13):1581-90 DOI: 10.1016/j.jnoncrysol.2012.04.019.
 
 
 
 
[1] Shukur MF, Kadir MFZ. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta. 2015;158:152-65 DOI: 10.1016/j.electacta.2015.01.167.
[2] Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, et al. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym. 2017;157:38-47
DOI: 10.1016/j.carbpol.2016.09.026.
[3] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci (Oxford). 2006;31(7):603-32
DOI: 10.1016/j.progpolymsci.2006.06.001.
[4] Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: A review. Carbohydr Polym. 2004;55(1):77-93
DOI: 10.1016/j.carbpol.2003.08.005.
[5] Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens Actuators, B Chem. 2016;225:348-53 DOI: 10.1016/j.snb.2015.11.073.
[6] Jiang J, Chan A, Ali S, Saha A, Haushalter KJ, Lam WLM, et al. Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote. Sci Rep. 2016;6: 20831
DOI: 10.1038/srep20831.
[7] Potivichayanon S, Pokethitiyook P, Kruatrachue M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 2006;41(3):708-15
DOI: 10.1016/j.procbio.2005.09.006.
[8] Dubinin AV, Demidova TP, Kremenetskii VV, Kokryatskaya NM, Rimskaya-Korsakova MN, Yakushev EV. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques. Oceanology. 2012;52(2):181-90
DOI: 10.1134/S0001437012010080.
[9] Ciesielski W, Zakrzewski R. Iodimetric Titration of Sulfur Compounds in Alkaline Medium. Chem Anal. 2006;51:653-79.
[10] Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077-92
DOI: 10.1021/acsami.5b00161.
[11] Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces. 2014;6(7):5319-26
DOI: 10.1021/am500944a.
[12] Jana S, Mondal A. Fabrication of SnO2/α-Fe2O3, SnO2/α-Fe2O3-PB heterostructure thin films: Enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces. 2014;6(18):15832-40
DOI: 10.1021/am5030879.
[13] Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces. 2014;6(10):7055-62
DOI: 10.1021/am501799w.
[14] Surya SG, Bhanoth S, Majhi SM, More YD, Teja VM, Chappanda KN. A silver nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-based capacitive H2S gas sensor. Crystengcomm. 2019;21(47):7303-12
DOI: 10.1039/c9ce01323g.
[15] Kneer J, Knobelspies S, Bierer B, Wöllenstein J, Palzer S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens Actuators, B Chem. 2016;222:625-31
DOI: 10.1016/j.snb.2015.08.071.
[16] Kneer J, Wöllenstein J, Palzer S. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing. Appl Phys Lett. 2014;105(7) 073509
DOI: 10.1063/1.4893736.
[17] Chen J, Gu J, Zhang R, Mao Y, Tian S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors. 2019;19(3) 605
DOI: 10.3390/s19030605.
18.       Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185-95
DOI: 10.1039/c5an02208h.
[19]      Fraden J. Handbook of modern sensors: Physics, designs, and applications 2016. 1-758 p.
[20]      Dunford S, Grinshpan A, Woods G. Calculating the Time Constant of an RC Circuit. Uudergrad J Math Model. 2010;2(2):1-11 http://dx.doi.org/10.5038/2326-3652.2.2.3.
[21] Ayesh AI, Mohsin MA, Haik MY, Haik Y. Investigations on electrical properties of poly(vinyl alcohol) doped with 1-methyl-3-n-decyl-imidazolium bromide ionic liquid. Curr Appl Phys. 2012;12(4):1223-8
DOI: 10.1016/j.cap.2012.03.004.
[22] Aziz NA, Majid SR, Arof AK. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. J Non Cryst Solids. 2012;358(12-13):1581-90
DOI: 10.1016/j.jnoncrysol.2012.04.019.