Double quantum dot of graphene nanoribbon qubit for Quantum information

Document Type : Original Article

Author

physics, Al-Azhar University, Cairo, Egypt

Abstract

Weak hyperfine interaction as well as spin-orbit interaction enforced that graphene quantum dot qubit material rather than other semiconductor qubits material. So; we suggest here a Hamiltonian model of a graphene nanoribbon double quantum dot qubit based on the functionalization of graphene nanoribbon by hydrogen atoms to produce a theoretical studied on a quantum computer. We are using the Dirac equation and the Heisenberg exchange approach to solve our model. Then we determine the exchange interaction Jex. We investigate the effects of potential barrier height and barrier thickness d on exchange coupling Jex. Our results show a great variation of Jex depends on these parameters, and how this parameter affected on Jex at special value. Also, we can use the variation of Jex with both potential barrier height and barrier thickness d to represent how the information can transfer, which is important to gate operation necessary for quantum information.

Keywords

Main Subjects


[1] Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK. Chaotic Dirac billiard in graphene quantum dots. Science 2008; 320 (5874): 356-358. doi: 10.1126/science.1154663.
[2] Jie-Sen Li, Zhi-Bing Li, Dao-Xin Yao. Quantum computation with two dimentional graphene quantum dots. Chinese Physics B 2012; 21: 1. dio:10.1088/1674-1056/21/1/017302.
[3] DiVincenzo DP, Bacon D, Kempe J, Burkard G, Whaley KB. Universal quantum computation with the exchange interaction. Nature 2000; 408:339–342. doi:10.1038/35042541.
[4] Wang WL, Yazyev OV, Meng S, Kaxiras E. Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices. Phys.Rev.Lett. 2009; 102 : 157201. doi:10.1103/PhysRevLett.102.157201.
[5] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 1985; 400 : 97. doi: 10.1098/rspa.1985.0070
[6] Loss D, DiVincenzo DP. Quantum computation with quantum dots. Phys.Rev.A 1998; 57:120. https://doi.org/10.1103/PhysRevA.57.120.
[7] Kotov VN, Uchoa B, Pereira VM, Guinea F, Castro Neto AH. Electron–Electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Phys. 2012; 84 : 1067. doi: 10.1103/RevModPhys.84.1067.
[8] Guttinger J. Graphene Quantum Dots. ETH       ZURICH 2011. https://www.research collection.ethz.ch.  
[9] Chiu KL, Xu Yang. Single-electron transport in graphene-like nanostructures. Elsevier 2017; 669: 1-42. doi: 10.1016/j.physrep.2016.12.002.
[10] Droth M, Burkard G. Spintronics with graphene
quantum dots. Phys.Status Solidi 2016; 10(1) : 75-90. doi: 10.1002/pssr.201510182.
[11] Bertrand B, Hermelin S, Takada S, Yamamoto M, Tarucha S, Ludwig A, Wieck AD, Bäuerle C, Meunier T. Fast spin information transfer between distant quantum dots using individual electrons. Nature Nanotechnology 2016; 11: 672–676. doi: 10.1038/nnano.2016.82.
[12] Katsnelson MI, Novoselov KS, Geim AK. Klein paradox in graphene. Nature Phys. 2006; 2 : 620–625. doi: 10.1038/nphys384.
[13] Chen H-Yi, Apalkov V, Chakraborty T. Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms. Phys. Rev. Lett. 2007; 98: 186803. doi: 10.1103/PhysRevLett.98. 186803.
[14] Trauzettel B, Bulaev DV, Loss D, Burkard G. Spin qubits in graphene quantum dots. Nature Physics 2007; 3 : 192. doi: 10.1038/nphys544.
[15] Espinosa-Ortega T, Luk’yanchuk IA, and Rubo YG. Magnetic properties of graphene quantum dots. Phys. Rev. B 2013; 87: 205434. doi: 10.1103/PhysRevB.87.205434.
[16] G¨u AD¸ cl¨u, Potasz P, Korkusinski M, Hawrylak P. Graphene Quantum Dots. Springer 2014. doi: 10.1007/978-3-662-44611-9.
[17] Tetsuka H, Nagoya A, Fukusumi T, Matsui T. Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices.  Adv. Mater. 2016; 28 : 4632–4638. doi: 10.1002/adma.201600058.
[18] Burkard G, Loss D, DiVincenzo DP. Phys. Rev. B 1999 ; 59 : 2070. https://doi.org/10.1103/PhysRevB.59.2070.
[19] Lin Z-R, Guo G-P, Tu T, Ma Q, Guo G-C. Quantum Computation with Graphene Nanostructure. Physics and Applications of Graphene - Theory, Sergey Mikhailov, IntechOpen; 2011. doi: 10.5772/15097.
 [20] Fuchs J-N. Dirac fermions in graphene and analogues: magnetic field and topological properties ; 2013. arXiv:1306.0380 [cond-mat.mes-hall].
[21] Kloeffel C, Loss D. Prospects for Spin-Based Quantum Computing in Quantum Dots. Annual Review of Condensed Matter Physics 2013; 4 : 51–81. https://doi.org/10.1146/ annurev - conmatphys -030212-184248.