Optical Characterization of Stabilized Atmospheric Pressure Pin to Plate Plasma Source

Document Type : Original Article

Authors

1 Meteorologist,Meteorological Authority (EMA),Cairo,Egypt

2 Center of Plasma Technology, Al-Azhar University in Cairo, Cairo, Egypt

3 Department of Physics, Faculty of Science, Al-Azhar University in Cairo, Cairo, Egypt

Abstract

DC Stabilized Discharges (DCSD) was generated in atmospheric pressure argon for a pin to plate. In this paper, discharge with a flowing argon gas into the air (plasma Source) is investigated by optical emission spectroscopy technique. The emission spectra of excited species of atomic-hydrogen, N2 and Ar were observed and measured. The rotational and vibrational temperatures of the discharge were measured by comparing modelled optical emission spectra with masured spectra from the discharge by using several different vibrational bands of the 2nd positive system (SPS) of N2 ( N2[C 3Πu] → N2[B 3Πg]). The optical characteristics of the discharge shown that the DCSD was found to be non-equilibrium with rotational temperature (Tr) of 1087 K and vibrational temperature (Tv) of 1661 K.  Boltzmann plot method has been applied to estimate the electronic excitation temperature which  was found to be 1.36 eV and 1.1 eV for discharges with argon flow rates of 1.0 SLM & 0.5 SLM respectively. This finding proved the strong non-equilibrium nature of the discharge conditions of the current work.

Keywords

Main Subjects


[1] Staack D, Farouk  B, Gutsol A F and Fridman A A . Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Science and Technology. 2006; 15(4): 818–827. doi.org/10.1088/0963-0252/15/4/027
[2] Staack D, Pollard W and Suzuki P. Striations in High-Pressure Hydrogen Microplasma. IEEE Transactions on Plasma Science.2014;  42(10): 2650–2651.
        doi: 10.1109/TPS.2014.2324536
 [3] George A,  Shen B, Craven M, Wang Y,  Kang D,  Wu C and  Tu X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renewable and Sustainable Energy Reviews. 2021; 135: 109702. doi.org/10.1016/j.rser.2020.109702
[4] Corbella C, Portal S, Lin L and Keidar M. Non-thermal plasma multi-jet platform based on a flexible matrix. Review of Scientific Instruments. 2021; 92(8): 083505.
[5] Zhou R, Wang X, Zhou R, Weerasinghe J, Zhang T, Xin Y, … Ostrikov K. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Front. Chem. Sci. Eng.2021.
[6] Mohamed H, Gebski E, Reyes R, Beane S, Wigdahl B, Krebs F.C,  Stapelmann K and  Miller V. Differential Effect of Non-Thermal Plasma RONS on Two Human Leukemic Cell Populations. Cancers. 2021; 13(10): 2437.
[7] Lin A, Razzokov J, Verswyvel H, Privat-Maldonado A,  De Backer J,  Yusupov M,  Cardenas De La Hoz E,  Ponsaerts P,  Smits E and  Bogaerts A. Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma. Cancers. 2021;  13(3): 579.
[8] KhabipovA, Freund E,  Liedtke K.R,  Käding A,  Riese  J,  van der Linde J,  Kersting S,  Patrick L and Bekeschus S. Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells. Cancers.2021; 13(11): 2525.
[9] Gao H,  Wang G,  Chen B,  Zhang Y,  Liu D,  Lu X.P,  He G and  Ostrikov K.Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols, Plasma Sources Sci. Technol. 2021; 30(5): 053001.
[10] Bruggeman P, Iza  F and Brandenburg R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology Plasma Sources Sci. Technol.2017; 26(12): 123002.
[11] Kunhardt E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci. 2000; 28(1): 189–200.
       doi:10.1109/27.842901 
[12] Mathew D, Bastiaens H, Boller K and Peters P. Effect of preionization, fluorine concentration, and current density on the discharge uniformity in F2 excimer laser gas mixtures. J. Appl. Phys.2007; 102 (3): 033305.
[13] Aldea E, Peeters P, De Vries H and Van De Sanden.  Atmospheric glow stabilization. do we need pre-ionization?. Surf. Coat. Technol.2005;  200(1–4): 46–50.
[14] Laroussi M, Alexeff I, Richardson J and Dyer F. The resistive barrier discharge. IEEE Trans. Plasma Sci.2002; 30 (1, Part 1): 158–159.
       doi: 10.1109/TPS.2002.1003972
[15] Andre P, Barinov Y, Faure G, Kaplan V, Lefort A,  Shkol  S and Vacher D. Experimental study of discharge with liquid non-metallic (tap-water) electrodes in air at atmospheric pressure. J. Phys. D: Appl. Phys.2001; 34 (24): 3456–3465.
[16] Lu  X and Laroussi M. Atmospheric pressure glow discharge in air using a water electrode. IEEE Trans. Plasma Sci.2005; 33 (2, Part 1): 272–273. doi:10.1109/TPS.2005.844946
[17] Bruggeman P, Ribezl E,  Maslani A,  Degroote J,  Malesevic A,  Rego R,  Vierendeels J and Leys C. Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Sci. Technol.2008;  17 (2):  025012.doi.org/10.1088/0963-0252/17/2/025012
[18] Staack D, Farouk B, Gutsol A.F and Fridman A. Spatially resolved temperature measurements of atmospheric-pressure normal glow microplasmas in air. IEEE Trans. Plasma Sci. 2007; 35(5, Part 2): 1448–1455. doi: 10.1109/TPS.2007.904959
[19] Akishev Y,  Goossens O, Callebaut T, Leys C,  Napartovich A and Trushkin N. The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air. Journal of Physics D: Applied Physics. 2001; 34(18): 2875–2882.                                           doi.org/10.1088/0022-3727/34/18/322
[20] Akishev Y,  Goossens O, Callebaut T, Leys C,  Napartovich A and Trushkin N. The DC glow discharge at atmospheric pressure. IEEE Transactions on Plasma Science.2002;  30(1): 176–177. doi: 10.1109/TPS.2002.1003981
[21] Staack D, Farouk B, Gutsol A.F and Fridman A. Stabilization of the ionization overheating thermal instability in atmospheric pressure microplasmas. Journal of Applied Physics. 2009; 106(1): 013303. doi.org/10.1063/1.3143781
[22]  Moss M S, Yanallah K,  Allen  R W K and Pontiga, F. An investigation of CO2 splitting using nanosecond pulsed corona discharge: effect of argon addition on CO2 conversion and energy efficiency.Plasma Sources Science and Technology.2017;  26(3): 035009.
[23] Scally L, Gulan M,  Weigang L,  Cullen P and Milosavljevic V. Significance of a Non-Thermal Plasma Treatment on LDPE Biodegradation with Pseudomonas Aeruginosa. Materials. 2018;  11(10): 1925.  doi.org/10.3390/ma11101925
[24] Shaojun Xu, Pericles I K, Philip A M and Christopher W. CO2 dissociation in a packed-bed plasma reactor: effects of operating conditions. Plasma Sources Sci. Technol.2018; 27(7): 075009                                                                                       doi.org/10.1088/1361-6595/aacd6a
[25] Galeev I G and Asadullin T Ya. Improving of stability of the volumetric glow discharge in the gas flow. Journal of Physics: Conference Series.2017;  789: 012012.
[26] Morgan N and  ElSabbagh M. Hydrogen Production from Methane Through Pulsed DC Plasma. Plasma Chem Plasma Process.2017;  37(5): 1375–1392.
[27]  Sasaki K, Hosoda R and  Shirai N. Negative ion species in atmospheric-pressure helium dc glow discharge produced in ambient air. Plasma Sources Sci.2020; 29(8): 085012.
[28] Országh J, Danko M, Ribar A and Matejčík Š. Nitrogen second positive system studied by electron-induced fluorescence. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.2012;  279: 76–79.
[29] Brooks C. Weather Elements. Nature.1942; 150: 728–729. doi.org/10.1038/150728a0
 [30] B S. Ozone developed by Humidity and Electricity. Nature.1870;  2: 473–474.
[31] Torben D, Nripen D, Paul A, Rhiannon M. C, Christopher J. H, Robert B, Naresh P, Bao Y, Ali Z, Samuel J, Kyle J, Jian Z, Michael S and Kourosh K. Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting. ACS Nano. 2017; 11(7): 6782–6794.
        doi.org/10.1021/acsnano.7b01632
[32] Hafizi B, Palastro J, Peñano J, Jones T, Johnson L, Helle M, Kaganovich D, Chen Y and Stamm A. Stimulated Raman and Brillouin scattering, nonlinear focusing, thermal blooming, and optical breakdown of a laser beam propagating in water. Journal of the Optical Society of America B. 2016; 33(10): 2062-2072.
[33] Meichsner J, Schmidt M, Schneider R and Wagner E. (Eds.).  Nonthermal Plasma Chemistry and Physics (1st ed.). CRC Press.2013.
       doi.org/10.1201/b12956
[34] Bruggeman P, Ribežl E, Maslani A, Degroote J,  Malesevic A,  Rego R, Vierendeels  J and  Christophe L. Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Science and Technology. 2008; 17(2): 025012.
[35] NIST Atomic Spectra Database. Available from: https://physics.nist.gov/PhysRefData/ASD/lines_form.html
[36] Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V and Morvová M. Emission spectroscopy of atmospheric pressure plasmas for biomedical and environmental applications, Journal of Molecular Spectroscopy.2007; 243(2): 194-201.
[37] Aldea E Private communications.
[38] Cong. Li,  Zhang J,  Yao Z,  Xingwei  W,  Chenfei Z and  Hongbin  D. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N2 Shock Plasma Jet Produced by a Low-Pressure DC Cascade Arc Discharge. Plasma Sci. Technol.2013; 15(9): 875.
[39] Jing Y, Yanan Y, Jingbo L and Bailiang P. Modeling of a diode transverse-pumped cesium vapor laser. Appl. Phys. B. 2014; 115(4): 571–576. doi.org/10.1007/s00340-013-5638-4
[40] HR Griem. Spectra Line Broadening in Plasmas. 1st ed. New York: Academic Press; 1974.
[41] Gigosos  M and  Cardeñoso V. New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics.1996;  29(20): 4795–4838.
[42] Laux CO, Spence TG,  Kruger CH and  Zare  RN. Optical diagnostics of atmospheric pressure air plasmas. 2003; 12(2): 125–138. doi.org/10.1088/0963-0252/12/2/301
[43] Kunze Hans-Joachim. Introduction to plasma spectroscopy. 1st ed. Berlin: Springer; 2009. doi.org/10.1007/978-3-642-02233-3
[44] Zhang, Yu,  Wen X-H and Yang W-H. Excitation temperatures of atmospheric argon in dielectric barrier discharges. Plasma Sources Science and Technology.2007; 16(3): 441–447. doi.org/10.1088/0963-0252/16/3/003
[45] Idris N, UsmawandaTN, Lahna K and Ramli M. Temperature estimation using Boltzmann plot method of many calcium emission lines in laser-plasma produced on river clamshell sample. J. Phys.: Conf. Ser; The 8th International Conference on Theoretical and Applied Physics;2018 Sep 20–21; Medan, Indonesia: IOP; 2018. 1120 (1): 012098.